Volume 20 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
LI De-min, LU Yong-zheng, QIN Zhen, XU Yan-yan, ZHANG Li, ZHANG Jin-ying, TANG Jun-nan. Cell derivatives in heart injury repair progress and application prospects[J]. Chinese Journal of General Practice, 2022, 20(3): 464-467. doi: 10.16766/j.cnki.issn.1674-4152.002379
Citation: LI De-min, LU Yong-zheng, QIN Zhen, XU Yan-yan, ZHANG Li, ZHANG Jin-ying, TANG Jun-nan. Cell derivatives in heart injury repair progress and application prospects[J]. Chinese Journal of General Practice, 2022, 20(3): 464-467. doi: 10.16766/j.cnki.issn.1674-4152.002379

Cell derivatives in heart injury repair progress and application prospects

doi: 10.16766/j.cnki.issn.1674-4152.002379
Funds:

 81800267

 202300410362

  • Received Date: 2021-06-18
    Available Online: 2022-08-13
  • Acute myocardial infarction (AMI) is still the leading cause of death in patients with coronary heart disease. New treatment strategies for repairing the damaged heart after AMI need to be developed. The latest research shows that cell derivatives exhibit great potential in the repair of heart damage, which is a hot spot in current medical research. Cell derivatives include extracellular vehicles (EVs), non-coding RNA, and growth factors. Combined with the latest research progress, this review shows the changes and functions of EVs derived from cardiomyocytes, endothelial cells and immune cells after AMI. The changes and effects of microribonucleic acid, long non-coding ribonucleic acid and circular ribonucleic acid in preclinical and clinical research after AMI are summarised. The focus is on the changes and effects of vascular endothelial growth factor and fibroblast growth factor after AMI. Finally, from the perspective of clinical application, the research on EVs, non-coding RNA, growth factors as biomarkers for the diagnosis and prediction of clinical disease progression, and the use of these cell derivatives as treatment methods for AMI are summarised. In short, cell derivatives have great potential in the repair of heart damage and are worthy of in-depth study.

     

  • loading
  • [1]
    BENJAMIN E J, MUNTNER P, ALONSO A, et al. Heart disease and stroke statistics-2019 update: A report from the american heart association[J]. Circulation, 2019, 139(10): e56-e528.
    [2]
    中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2019概要[J]. 中国循环杂志, 2020, 35(9): 833-854. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXH202009001.htm

    The Writing Committee of the Report on Cardiovascular Health and Diseases. Report on cardiovascular health and diseases in China 2019: An updated summary[J]. Chinese Circulation Journal, 2020, 35(9): 833-854 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXH202009001.htm
    [3]
    GULATI R, BEHFAR A, NARULA J, et al. Acute myocardial infarction in young individuals[J]. Mayo Clin Proc, 2020, 95(1): 136-156. doi: 10.1016/j.mayocp.2019.05.001
    [4]
    PEET C, IVETIC A, BROMAGE D I, et al. Cardiac monocytes and macrophages after myocardial infarction[J]. Cardiovasc Res, 2020, 116(6): 1101-1112. doi: 10.1093/cvr/cvz336
    [5]
    YU Y, LIU H, YANG D, et al. Aloe-emodin attenuates myocardial infarction and apoptosis via up-regulating miR-133 expression[J]. Pharmacol Res, 2019, 146(1): 104315.
    [6]
    CHEN P, WANG L, FAN X, et al. Targeted delivery of extracellular vesicles in heart injury[J]. Theranostics, 2021, 11(5): 2263-2277. doi: 10.7150/thno.51571
    [7]
    YANG Y, LI Y, CHEN X, et al. Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia[J]. J Mol Med(Berl), 2016, 94(6): 711-724.
    [8]
    YU X, DENG L, WANG D, et al. Mechanism of TNF-α autocrine effects in hypoxic cardiomyocytes: Initiated by hypoxia inducible factor 1α, presented by exosomes[J]. J Mol Cell Cardiol, 2012, 53(6): 848-857. doi: 10.1016/j.yjmcc.2012.10.002
    [9]
    WU T, LENG Q, TIAN L. The microRNA-210/Casp8ap2 axis alleviates hypoxia-Induced myocardial injury by regulating apoptosis and autophagy[J]. Cytogenet Genome Res, 2021, 161(3-4): 132-142. doi: 10.1159/000512254
    [10]
    BOULANGER C M, LOYER X, RAUTOU P, et al. Extracellular vesicles in coronary artery disease[J]. Nat Rev Cardiol, 2017, 14(5): 259-272. doi: 10.1038/nrcardio.2017.7
    [11]
    ZHU J, YAO K, GUO J, et al. miR-181a and miR-150 regulate dendritic cell immune inflammatory responses and cardiomyocyte apoptosis via targeting JAK1-STAT1/c-Fos pathway[J]. J Cell Mol Med, 2017, 21(11): 2884-2895. doi: 10.1111/jcmm.13201
    [12]
    XIONG Y Y, GONG Z T, TANG R J, et al. The pivotal roles of exosomes derived from endogenous immune cells and exogenous stem cells in myocardial repair after acute myocardial infarction[J]. Theranostics, 2021, 11(3): 1046-1058. doi: 10.7150/thno.53326
    [13]
    MUSHTAQ I, ISHTIAQ A, ALI T, et al. An overview of non-coding RNAs and cardiovascular system[J]. Adv Exp Med Biol, 2020, 1229: 3-45.
    [14]
    ZHOU S, JIN J, WANG J, et al. miRNAS in cardiovascular diseases: Potential biomarkers, therapeutic targets and challenges[J]. Acta Pharmacol Sin, 2018, 39(7): 1073-1084. doi: 10.1038/aps.2018.30
    [15]
    LIU X, TONG Z, CHEN K, et al. The role of miRNA-132 against apoptosis and oxidative stress in heart failure[J]. Biomed Res Int, 2018: 3452748. DOI: 10.1155/2018/3452748.
    [16]
    GUO Y, LUO F, LIU Q, et al. Regulatory non-coding RNAs in acute myocardial infarction[J]. J Cell Mol Med, 2017, 21(5): 1013-1023. doi: 10.1111/jcmm.13032
    [17]
    LI M, WANG Y F, YANG X C, et al. Circulating long noncoding RNA LIPCAR acts as a novel biomarker in patients with ST-segment elevation myocardial infarction[J]. Med Sci Monit, 2018, 24: 5064-5070. doi: 10.12659/MSM.909348
    [18]
    LI L, CONG Y, GAO X, et al. Differential expression profiles of long non-coding RNAs as potential biomarkers for the early diagnosis of acute myocardial infarction[J]. Oncotarget, 2017, 8(51): 88613-88621. doi: 10.18632/oncotarget.20101
    [19]
    GARIKIPATI V, VERMA S K, CHENG Z, et al. Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis[J]. Nat Commun, 2019, 10(1): 4317. doi: 10.1038/s41467-019-11777-7
    [20]
    ZOU J, FEI Q, XIAO H, et al. VEGF-A promotes angiogenesis after acute myocardial infarction through increasing ROS production and enhancing ER stress-mediated autophagy[J]. J Cell Physiol, 2019, 234(10): 17690-17703. doi: 10.1002/jcp.28395
    [21]
    NIU J, HAN X, QI H, et al. Correlation between vascular endothelial growth factor and long-term prognosis in patients with acute myocardial infarction[J]. Exp Ther Med, 2016, 12(1): 475-479. doi: 10.3892/etm.2016.3286
    [22]
    REN Z, XIAO W, ZENG Y, et al. Fibroblast growth factor-21 alleviates hypoxia/reoxygenation injury in H9c2 cardiomyocytes by promoting autophagic flux[J]. Int J Mol Med, 2019, 43(3): 1321-1330.
    [23]
    THORSEN I S, GORANSSON L G, UELAND T, et al. The relationship between fibroblast growth factor 23 (FGF23) and cardiac MRI findings following primary PCI in patients with acute first time STEMI[J]. Int J Cardiol Heart Vasc, 2021, 33: 100727.
    [24]
    SAHOO S, ADAMIAK M, MATHIYALAGAN P, et al. Therapeutic and diagnostic translation of extracellular vesicles in cardiovascular diseases roadmap to the clinic[J]. Circulation, 2021, 143(14): 1426-1449. doi: 10.1161/CIRCULATIONAHA.120.049254
    [25]
    LIAO H, MENG L, YU X, et al. Increased circulating erythrocyte-derived microparticles in patients with acute coronary syndromes[J]. Biomark Med, 2021, 15(10): 741-751. doi: 10.2217/bmm-2021-0141
    [26]
    EMANUELI C, SHEARN A I, LAFTAH A, et al. Coronary artery-bypass-graft surgery increases the plasma concentration of exosomes carrying a cargo of cardiac microRNAs: An example of exosome trafficking out of the human heart with potential for cardiac biomarker discovery[J]. PLoS One, 2016, 11(4): e154274.
    [27]
    DEDDENS J C, VRIJSEN K R, COLIJN J M, et al. Circulating extracellular vesicles contain miRNAs and are released as early biomarkers for cardiac Injury[J]. J Cardiovasc Transl Res, 2016, 9(4): 291-301. doi: 10.1007/s12265-016-9705-1
    [28]
    李竹英, 王婷, 李寒梅. 外泌体在支气管哮喘发病机制中的作用[J]. 中华全科医学, 2020, 18(2): 291-294. doi: 10.16766/j.cnki.issn.1674-4152.001228

    LI Z Y, WANG T, LI H M. The role of exosomes in the pathogenesis of bronchial asthma[J]. Chinese Journal of General Practice, 2020, 18(2): 291-294. doi: 10.16766/j.cnki.issn.1674-4152.001228
    [29]
    LEE B, KANG I, YU K. Therapeutic features and updated clinical trials of mesenchymal stem cell (MSC)-derived exosomes[J]. J Clin Med, 2021, 10(4): 711. doi: 10.3390/jcm10040711
    [30]
    NORONHA N C, MIZUKAMI A, CALIARI-OLIVEIRA C, et al. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies[J]. Stem Cell Res Ther, 2019, 10(1): 131. doi: 10.1186/s13287-019-1224-y
    [31]
    SUZUKI E, FUJITA D, TAKAHASHI M, et al. Therapeutic effects of mesenchymal stem cell-derived exosomes in cardiovascular disease[J]. Adv Exp Med Biol, 2017, 998: 179-185.
    [32]
    CHEN G, WANG M, RUAN Z, et al. Mesenchymal stem cell-derived exosomal miR-143-3p suppresses myocardial ischemia-reperfusion injury by regulating autophagy[J]. Life Sci, 2021, 280: 119742. doi: 10.1016/j.lfs.2021.119742
    [33]
    GOLLMANN-TEPEKÖYLVC, PÖLZL L, GRABER M, et al. miR-19a-3p containing exosomes improve function of ischaemic myocardium upon shock wave therapy[J]. Cardiovasc Res, 2020, 116(6): 1226-1236. doi: 10.1093/cvr/cvz209
    [34]
    LUTHER K M, HAAR L, MCGUINNESS M, et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells[J]. J Mol Cell Cardiol, 2018, 119: 125-137. doi: 10.1016/j.yjmcc.2018.04.012
    [35]
    DE ABREU R C, FERNANDES H, DA C M P, et al. Native and bioengineered extracellular vesicles for cardiovascular therapeutics[J]. Nat Rev Cardiol, 2020, 17(11): 685-697. doi: 10.1038/s41569-020-0389-5
    [36]
    PEZZANA C, AGNELY F, BOCHOT A, et al. Extracellular vesicles and biomaterial design: New therapies for cardiac repair[J]. Trends Mol Med, 2021, 27(3): 231-247. doi: 10.1016/j.molmed.2020.10.006
    [37]
    LV K, LI Q, ZHANG L, et al. Incorporation of small extracellular vesicles in sodium alginate hydrogel as a novel therapeutic strategy for myocardial infarction[J]. Theranostics, 2019, 9(24): 7403-7416. doi: 10.7150/thno.32637
    [38]
    LIU B, LEE B W, NAKANISHI K, et al. Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells[J]. Nat Biomed Eng, 2018, 2(5): 293-303. doi: 10.1038/s41551-018-0229-7
    [39]
    MEHRYAB F, RABBANI S, SHAHHOSSEINI S, et al. Exosomes as a next-generation drug delivery system: An update on drug loading approaches, characterization, and clinical application challenges[J]. Acta Biomater, 2020, 113: 42-62. doi: 10.1016/j.actbio.2020.06.036
    [40]
    WIKLANDER O, BRENNAN M Á, LÖTVALL J, et al. Advances in therapeutic applications of extracellular vesicles[J]. Sci Transl Med, 2019, 11(492): eaav8521. doi: 10.1126/scitranslmed.aav8521
    [41]
    WANG K J, ZHAO X, LIU Y Z, et al. Circulating MiR-19b-3p, MiR-134-5p and MiR-186-5p are promising novel biomarkers for early diagnosis of acute myocardial infarction[J]. Cell Physiol Biochem, 2016, 38(3): 1015-1029. doi: 10.1159/000443053
    [42]
    FANG Y, XU Y, WANG R, et al. Recent advances on the roles of lncRNAs in cardiovascular disease[J]. J Cell Mol Med, 2020, 24(21): 12246-12257. doi: 10.1111/jcmm.15880
    [43]
    VAUSORT M, SALGADO-SOMOZA A, ZHANG L, et al. Myocardial infarction-associated circular RNA predicting left ventricular dysfunction[J]. J Am Coll Cardiol, 2016, 68(11): 1247-1248. doi: 10.1016/j.jacc.2016.06.040
    [44]
    KHOSRAVI F, AHMADVAND N, BELLUSCI S, et al. The multifunctional contribution of FGF signaling to cardiac development, homeostasis, disease and repair[J]. Front Cell Dev Biol, 2021, 9: 672935. doi: 10.3389/fcell.2021.672935
    [45]
    REN Z, XIAO W, ZENG Y, et al. Fibroblast growth factor-21 alleviates hypoxia/reoxygenation injury in H9c2 cardiomyocytes by promoting autophagic flux[J]. Int J Mol Med, 2019, 43(3): 1321-1330.
    [46]
    ITOH N, OHTA H, NAKAYAMA Y, et al. Roles of FGF signals in heart development, health, and disease[J]. Front Cell Dev Biol, 2016, 4(30): 110.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (254) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return