Citation: | CHEN Shao-chuan, TONG Hua-sheng. Prediction of traumatic coagulation disease based on the concept of hemorrhagic coagulation failure[J]. Chinese Journal of General Practice, 2022, 20(4): 655-660. doi: 10.16766/j.cnki.issn.1674-4152.002423 |
[1] |
GBD 2016 CAUSES OF DEATH COLLABORATORS. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016 a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2017, 390(10100): 1151-1210. doi: 10.1016/S0140-6736(17)32152-9
|
[2] |
ZHANG J, ZHANG F, DONG J F. Coagulopathy induced by traumatic brain injury: Systemic manifestation of a localized injury[J]. Blood, 2018, 131(18): 2001-2006. doi: 10.1182/blood-2017-11-784108
|
[3] |
SPAHN D R, BOUILLON B, CERNY V, et al. The European guideline on management of major bleeding and coagulopathy following trauma: Fifth edition[J]. Crit Care, 2019, 23(1): 98. doi: 10.1186/s13054-019-2347-3
|
[4] |
KORNBLITH L Z, MOORE H B, COHEN M J. Tramua-induced coagulopathy: The past, present, and future[J]. J Thromb Haemost, 2019, 17(6): 852-862. doi: 10.1111/jth.14450
|
[5] |
CHANG R, CARDENAS J C, WADE C E, et al. Advances in the understanding of trauma-induced coagulopathy[J]. Blood, 2016, 128(8): 1043-1049. doi: 10.1182/blood-2016-01-636423
|
[6] |
BOHM J K, SCHAFER N, MAEGELE M, et al. Plasmatic and cell-based enhancement by microparticles originated from platelets and endothelial cells under simulated in vitro conditions of a dilutional coagulopathy[J]. Scand J Trauma Resusc Emerg Med, 2021, 29(1): 38. doi: 10.1186/s13049-021-00847-9
|
[7] |
CASPERS M, MAEGELE M, FROHLICH M. Current strategies for hemostatic control in acute trauma hemorrhage and trauma-induced coagulopathy[J]. Expert Rev Hematol, 2018, 11(12): 987-995. doi: 10.1080/17474086.2018.1548929
|
[8] |
NATHAN J W, KEVIN R W, PATI S, et al. Hemorrhagic blood failure: Oxygen debt, coagulopathy, and endothelial damage[J]. J Trauma Acute Care Surg, 2017, 82(6S): S41-S49. doi: 10.1097/TA.0000000000001436
|
[9] |
田勇, 卜瑞红, 解彦格, 等. 乌司他丁对创伤性凝血病患者凝血功能及炎症因子的影响[J]. 中国临床研究, 2018, 31(3): 369-372. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCK201803020.htm
TIAN Y, BU R H, XIE Y G, et al. Effect of ulinastatin on coagulation function and inflammatory cytokines in patients with traumatic coagulation disease[J]. Chinese Journal of Clinical Research, 2018, 31(3): 369-372. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCK201803020.htm
|
[10] |
张志华, 余国峰. 血栓弹力图用于诊断颅脑损伤后创伤性凝血病的临床研究[J]. 中华全科医学, 2021, 19(8): 1300-1302, 1329. doi: 10.16766/j.cnki.issn.1674-4152.002045
ZHANG Z H, YU G F. Clinical study of thromboelastography in the diagnosis of traumatic coagulopathy after craniocerebral injury[J]. Chinese Journal of General Practice, 2021, 19(8): 1300-1302, 1329. doi: 10.16766/j.cnki.issn.1674-4152.002045
|
[11] |
CHOW J H, RICHARDS J E, MORRISON J J, et al. Viscoelastic signals for optimal resuscitation in trauma: Kaolin thrombelastography cutoffs for diagnosing hypofibrinogenemia (VISOR Study)[J]. Anesth Analg, 2019, 129(6): 1482-1491. doi: 10.1213/ANE.0000000000004315
|
[12] |
GEOFFREY P D, JODIE L M, LISA M D, et al. Traumatic-induced coagulopathy as a systems failure: A new window into hemostasis[J]. Semin Thromb Hemost, 2020, 46(2): 199-214. doi: 10.1055/s-0039-1701018
|
[13] |
TRANCA S, PETRISOR C, HAGAU N, et al. Can APACHE Ⅱ, SOFA, ISS, and RTS severity scores be used to predict septic complications in multiple trauma patients[J]. J Crit Care Med, 2016, 2(3): 124-130. doi: 10.1515/jccm-2016-0019
|
[14] |
NEEKI M M, DONG F, TOY J, et al. Safety and efficacy of hospital utilization of tranexamic acid in civilian adult trauma resuscitation[J]. West J Emerg Med, 2020, 21(2): 217-225. doi: 10.5811/westjem.2019.10.43055
|
[15] |
DEYNSE H V, COOLS W, DEPREITERE B, et al. Quantifying injury severity for traumatic brain injury with routinely collected health data[J]. Injury, 2022, 53(1): 11-20. doi: 10.1016/j.injury.2021.10.013
|
[16] |
CARIUS P H, HOFMANN G O, LEFERING R, et al. Clinical presentation and blood gas analysis of multiple trauma patients for prediction of standard coagulation parameters at emergency department arrival[J]. Anaesthesist, 2016, 65(4): 274-280. doi: 10.1007/s00101-016-0150-y
|
[17] |
沈哲源, 田书委, 孔宇, 等. 创伤性凝血病发病机制及诊治研究进展[J]. 中华创伤杂志, 2018, 34(4): 377-384. doi: 10.3760/cma.j.issn.1001-8050.2018.04.015
SHEN Z Y, TIAN S W, KONG Y, et al. Research advances in pathophysiology, diagnosis and therapy of trauma-induced coagulopathy[J]. Chinese Journal of Traumatology, 2018, 34(4): 377-384. doi: 10.3760/cma.j.issn.1001-8050.2018.04.015
|
[18] |
AN Z P, HUANG H B, WANG Z G, et al. Correlation between plasma D-Dimer level and severity and prognosis in patients admitted at emergency department with trauma[J]. Clin Lab, 2020, 66(1). DOI: 10.7754/Clin.Lab.2019.190520.
|
[19] |
BJERKVIG C K, STRANDENES G, ELIASSEN H S, et al. "Blood failure" time to view blood as an organ: How oxygen debt contributes to blood failure and its implications for remote damage control resuscitation[J]. Transfusion, 2016, 56(Suppl 2): S182-S189.
|
[20] |
HAYAKAWA M, MAEKAWA K, KUSHIMOTO S, et al. High-dimer levels predicate a poor outcome in patients with severe trauma, even with high fibrinogen levels on arrival: A multicenter retrospective study[J]. Shock, 2016, 45(3): 308-314. doi: 10.1097/SHK.0000000000000542
|
[21] |
田勇, 卜瑞红, 解彦格, 等. 急性创伤性凝血病不同预后患者外周血APC、vWF、D-D水平变化及意义[J]. 山东医药, 2017, 57(34): 75-77. doi: 10.3969/j.issn.1002-266X.2017.34.025
TIAN Y, BU R H, XIE Y G, et al. Changes of peripheral blood APC, vWF and D-D in patients with acute traumatic coagulopathy with different prognoses and their significance[J]. Shandong Medical Journal, 2017, 57(34): 75-77. doi: 10.3969/j.issn.1002-266X.2017.34.025
|
[22] |
NAKAE R, FUJIKI Y, TAKAYAMA Y, et al. Age-related differences in the time course of coagulation and fibrinolytic parameters in patients with traumatic brain injury[J]. Int J Mol Sci, 2020, 21(16): 5613. doi: 10.3390/ijms21165613
|
[23] |
SETH D, HAUSLADEN A, STAMLER J S. Anaerobic transcription by OxyR: A novel paradigm for nitrosative stress[J]. Antioxid Redox Signal, 2020, 32(12): 803-816. doi: 10.1089/ars.2019.7921
|
[24] |
THOMAS M, BENOV L. The contribution of superoxide radical to cadmium toxicity in E. coli[J]. Biol Trace Elem Res, 2018, 181(2): 361-368. doi: 10.1007/s12011-017-1048-5
|
[25] |
RABINOWITZ J D, ENERBACK S. Lactate: The ugly duckling of energy metabolism[J]. Nat Metab, 2020, 2(7): 566-571. doi: 10.1038/s42255-020-0243-4
|
[26] |
张丽英, 肖毅, 张红, 等. 乳酸清除率、C反应蛋白和CURB-65评分在评估急诊重症肺炎预后中的作用[J]. 北京医学, 2021, 43(5): 460-462, 465. https://www.cnki.com.cn/Article/CJFDTOTAL-BJYX202105025.htm
ZHANG L Y, XIAO Y, ZHANG H, et al. The role of lactate clearance, C-reactive protein and CURB-65 score in evaluating the prognosis of acute severe pneumonia[J]. Beijing Medical Journal, 2021, 43(5): 460-462, 465. https://www.cnki.com.cn/Article/CJFDTOTAL-BJYX202105025.htm
|
[27] |
JOFFRE J, HELLMAN J, INCE C, et al. Endothelial responses in sepsis[J]. Am J Respir Crit Care Med, 2020, 202(3): 361-370. doi: 10.1164/rccm.201910-1911TR
|
[28] |
GODO S, SHIMOKAWA H. Endothelial functions[J]. Arterioscler Thromb Vasc Biol, 2017, 37(9): e108-e114.
|
[29] |
UCHIDA K, NISHIMURA T, HAGAWA N, et al. The impact of early administration of vasopressor agents for the resuscitation of severe hemorrhagic shock following blunt trauma[J]. BMC Emerg Med, 2020, 20(1): 26. doi: 10.1186/s12873-020-00322-1
|
[30] |
CASH A, THEUS M H. Mechanisms of blood-brain barrier dysfunction in traumatic brain injury[J]. Int J Mol Sci, 2020, 21(9): 3344. doi: 10.3390/ijms21093344
|
[31] |
JOHANSSON P I, HENRIKSEN H H, STENSBALLE J, et al. Traumatic endotheliopathy: A prospective observational study of 424 severely injured patients[J]. Ann Surg, 2017, 265(3): 597-603. doi: 10.1097/SLA.0000000000001751
|
[32] |
PILLINGER N L, KAM P. Endothelial glycocalyx: Basic science and clinical implications[J]. Anaesth Intensive Care, 2017, 45(3): 295-307. doi: 10.1177/0310057X1704500305
|
[33] |
CAHILL P A, REDMOND E M. Vascular endothelium: Gatekeeper of vessel health[J]. Atherosclerosis, 2016, 248: 97-109. doi: 10.1016/j.atherosclerosis.2016.03.007
|
[34] |
ABASSI Z, ARMALY Z, HEYMAN S N. Glycocalyx degradation in ischemia-reperfusion injury[J]. Am J Pathol, 2020, 190(4): 752-767. doi: 10.1016/j.ajpath.2019.08.019
|
[35] |
DESIDERI S, ONIONS K L, BAKER S L, et al. Endothelial glycocalyx restoration by growth factors in diabetic nephropathy[J]. Biorheology, 2019, 56(2-3): 163-179. doi: 10.3233/BIR-180199
|
[36] |
COSGUN Z C, FELS B, VIHROG K K. Nanomechanics of the endothelial glycocalyx: From structure to function[J]. Am J Pathol, 2020, 190(4): 732-741. doi: 10.1016/j.ajpath.2019.07.021
|
[37] |
ABDULLAH S, KARIM M, LEGENDRE M, et al. Hemorrhagic shock and resuscitation causes glycocalyx shedding and endothelial oxidative stress preferentially in the lung and intestinal vasculature[J]. Shock, 2021, 56(5): 803-812. doi: 10.1097/SHK.0000000000001764
|
[38] |
CHIPMAN A M, WU F, KOZAR R A. Fibrinogen inhibits microRNA-19b, a novel mechanism for repair of haemorrhagic shock-induced endothelial cell dysfunction[J]. Blood Transfus, 2021, 19(5): 420-427.
|
[39] |
MISHRA A K, DINGLI D. Metformin inhibits IL-6 signaling by decreasing IL-6R expression on multiple myeloma cells[J]. Leukemia, 2019, 33(11): 2695-2709. doi: 10.1038/s41375-019-0470-4
|
[40] |
DUQUE P, MORA L, LEVY J H. et al. Pathophysiological response to trauma-induced coagulopathy: A comprehensive review[J]. Anesth Analg, 2020, 130(3): 654-664. doi: 10.1213/ANE.0000000000004478
|
[41] |
PETROS S. Trauma-induced coagulopathy[J]. Hamostaseologie, 2019, 39(1): 20-27. doi: 10.1055/s-0039-1677853
|
[42] |
MINSKY B B, ABZALIMOV R R, NIU C, et al. Mass spectrometry revels a multifaceted role of glycosaminoglycan chains in factor Xa inactivation by antithrombin[J]. Biochemistry, 2018, 57(32): 4880-4890.
|
[43] |
CHANG R, CARDENAS J C, WADE C E, et al. Advances in the understanding of trauma-induced coagulopathy[J]. Blood, 2016, 128(8): 1043-1049. doi: 10.1182/blood-2016-01-636423
|
[44] |
NAKANO T, TAKAHASHI T, YAMAMOTO C, et al. Arsenite inhibits tissue-type plasminogen activator synthesis through NRF2 activation in cultured human vascular endothelial EA. hy926 cells[J]. Int J Mol Sci, 2021, 22(2): 739.
|
[45] |
ANDRIANTO A, AL-FARABI M J, NUGRAHA R A, et al. Biomarkers of endothelial dysfunction and outcomes in coronavirus disease 2019 (COVID-19) patients: A systematic review and meta-analysis[J]. Mircovasc Res, 2021, 138: 104224.
|
[46] |
SALEH J, PEYSSONNAUX C, SINGH K K, et al. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis[J]. Mitochondrion, 2020, 54(4): 1-7.
|
[47] |
WU S C, RAU C S, KUO S C H, et al. Shock index increase from the field to the emergency room is associate with higher odds of massive transfusion in trauma patients with stable blood pressure: A cross-sectional analysis[J]. Am Surg, 2019, 14(4): e0216153.
|
[48] |
ODOM S R, HOWELL M D, GUPTA A, et al. Extremes of shock index predicts death in trauma patients[J]. J Emerg Trauma Shock, 2016, 9(3): 103-106.
|
[49] |
DE LUCAS E H, SANCHEZ M S, FUCINOS L C, et al. Lactate and lactate clearance in critically burned patients: Usefulness and limitations as a resuscitation guide and as a prognostic factor[J]. Burns, 2020, 46(8): 1839-1847.
|
[50] |
RAHBAR E, CARDENAS J C, BAIMUKANOVA G, et al. Endothelial glycocalyx shedding and vascular permeability in severely injured trauma patients[J]. J Transl Med, 2015;13: 117.
|