Citation: | LI Han-yue, DING Shi-tian, CHEN Xiao-qing. Research progress of respiratory microbiota and lung disease in neonates[J]. Chinese Journal of General Practice, 2022, 20(10): 1746-1750. doi: 10.16766/j.cnki.issn.1674-4152.002694 |
[1] |
BIESBROEK G, TSIVTSIVADZE E, SANDERS E A, et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children[J]. Am J Respir Crit Care Med, 2014, 190(11): 1283-1292. doi: 10.1164/rccm.201407-1240OC
|
[2] |
KORPELA K. Impact of delivery mode on infant gut microbiota[J]. Ann Nutr Metab, 2021, 77(3): 11-19.
|
[3] |
UBEROS J. Perinatal microbiota: Review of its importance in newborn health[J]. Arch Argent Pediatr, 2020, 118(3): e265-e270.
|
[4] |
DONG T S, GUPTA A. Influence of early life, diet, and the environment on the microbiome[J]. Clin Gastroenterol Hepatol, 2019, 17(2): 231-242. doi: 10.1016/j.cgh.2018.08.067
|
[5] |
NEAL E, NGUYEN C, RATU F T, et al. A comparison of pneumococcal nasopharyngeal carriage in very young Fijian infants born by vaginal or cesarean delivery[J]. JAMA Netw Open, 2019, 2(10): e1913650. DOI: 10.1001/jamanetworkopen.2019.13650.
|
[6] |
CARDELLI E, CALVIGIONI M, VECCHIONE A, et al. Delivery mode shapes the composition of the lower airways microbiota in newborns[J]. Front Cell Infect Microbiol, 2021: 1342. DOI: 10.3389/fcimb.2021.808390.
|
[7] |
KALBERMATTER C, FERNANDEZ T N, CHRISTENSEN S, et al. Maternal microbiota, early life colonization and breast milk drive immune development in the newborn[J]. Front Immunol, 2021, 12: 1768. DOI: 10.3389/fimmu.2021.683022.
|
[8] |
SCHLOSSER-BRANDENBURG J, EBNER F, KLOPFLEISCH R, et al. Influence of nutrition and maternal bonding on postnatal lung development in the newborn pig[J]. Front Immunol, 2021: 3144. DOI: 10.3389/fimmu.2021.734153.
|
[9] |
BOSCH A, DE STEENHUIJSEN P W, VAN HOUTEN M A, et al. Maturation of the infant respiratory microbiota, environmental drivers, and health consequences. A prospective cohort study[J]. Am J Respir Crit Care Med, 2017, 196(12): 1582-1590. doi: 10.1164/rccm.201703-0554OC
|
[10] |
FERRER M, MENDEZ-GARCIA C, ROJO D, et al. Antibiotic use and microbiome function[J]. Biochem Pharmacol, 2017, 134: 114-126. doi: 10.1016/j.bcp.2016.09.007
|
[11] |
侯齐书, 叶继锋, 林小君. 382例新生儿肺炎病原菌分布及耐药性分析[J]. 中国消毒学杂志, 2018, 35(7): 548-550. doi: 10.11726/j.issn.1001-7658.2018.07.023
HOU Q S, YE J F, LIN X J. Distribution and drug resistance of pathogens in 382 cases of neonatal pneumonia[J]. Chin J Disinfect, 2018, 35(7): 548-550. doi: 10.11726/j.issn.1001-7658.2018.07.023
|
[12] |
HU Q, DAI W K, ZHOU Q, et al. Dynamic oropharyngeal and faecal microbiota during treatment in infants hospitalized for bronchiolitis compared with age-matched healthy subjects[J]. Sci Rep, 2017, 7(1): 11266. doi: 10.1038/s41598-017-11311-z
|
[13] |
洪慧慧, 王立波, 祁媛媛. 基于16S rDNA可变区测序技术对抗生素治疗后的6月龄内肺炎婴儿的呼吸道菌群现况调查[J]. 中国循证儿科杂志, 2018, 13(1): 45-49. doi: 10.3969/j.issn.1673-5501.2018.01.006
HONG H H, WANG L B, QI Y Y. The respiratory bacteria microbiota of infants with pneumonia less than 6 months old[J]. Chin J Evid Based Pediatr, 2018, 13(1): 45-49. doi: 10.3969/j.issn.1673-5501.2018.01.006
|
[14] |
TOIVONEN L, SCHUEZ-HAVUPALO L, KARPPINEN S, et al. Antibiotic treatments during infancy, changes in nasal microbiota, and asthma development: Population-based cohort study[J]. Clin Infect Dis, 2021, 72(9): 1546-1554. doi: 10.1093/cid/ciaa262
|
[15] |
TOIVONEN L, HASEGAWA K, WARIS M, et al. Early nasal microbiota and acute respiratory infections during the first years of life[J]. Thorax, 2019, 74(6): 592-599. doi: 10.1136/thoraxjnl-2018-212629
|
[16] |
KOBESHAVIDZE N, CHIKVILADZE D, GACHECHILADZE K, et al. The microbial structure of the mucous membrane of the respiratory tract in premature infants[J]. Georgian Med News, 2019(288): 131-135.
|
[17] |
李伟然, 汪志凌, 万朝敏. 肠道菌群与"肠-肺"轴之间的关系[J]. 中华实用儿科临床杂志, 2017, 32(7): 548-551. doi: 10.3760/cma.j.issn.2095-428X.2017.07.019
LI W R, WANG Z L, WAN Z M. Interaction between gut microbiota and "gut-lung" axis[J]. Chin J Appl Clin Pediatr, 2017, 32(7): 548-551. doi: 10.3760/cma.j.issn.2095-428X.2017.07.019
|
[18] |
李文龙, 李慧君, 张丰泉, 等. 肠道菌群与肺部疾病相关性研究进展[J]. 实用医学杂志, 2019, 35(14): 2195-2199. doi: 10.3969/j.issn.1006-5725.2019.14.001
LI W L, LI H J, ZHANG F Q, et al. Advance of the relationship between gut microbiota and lung diseases[J]. The J Pract Med, 2019, 35(14): 2195-2199. doi: 10.3969/j.issn.1006-5725.2019.14.001
|
[19] |
彭倩, 曲书强. 肺微生物群落对早产儿肺发育影响的研究进展[J]. 中国儿童保健杂志, 2021, 29(3): 289-291. https://www.cnki.com.cn/Article/CJFDTOTAL-ERTO202103015.htm
PENG Q, QU S Q. Research progress on the effects of pulmonary microbiota on the lung development of premature infants[J]. Chin J Child Health Care, 2021, 29(3): 289-291. https://www.cnki.com.cn/Article/CJFDTOTAL-ERTO202103015.htm
|
[20] |
陈益民, 沙建平, 刘社兰, 等. 肠道和呼吸道菌群与肺部疾病的研究新进展[J]. 中国微生态学杂志, 2017, 29(10): 1234-1240.
CHEN Y M, SHA J P, LIU S L, et al. Correlation of gut microbiota and respiratory microbiota with lung diseases: Research progress[J]. Chin J Microecol, 2017, 29(10): 1234-1240.
|
[21] |
FRATI F, SALVATORI C, INCORVAIA C, et al. The role of the microbiome in asthma: The gut(-)lung axis[J]. Int J Mol Sci, 2018, 20(1): 123. doi: 10.3390/ijms20010123
|
[22] |
MCALEER J P, KOLLS J K. Contributions of the intestinal microbiome in lung immunity[J]. Eur J Immunol, 2018, 48(1): 39-49. doi: 10.1002/eji.201646721
|
[23] |
PIERSIGILLI F, VAN GRAMBEZEN B, HOCQ C, et al. Nutrients and microbiota in lung diseases of prematurity: The placenta-gut-lung triangle[J]. Nutrients, 2020, 12(2): 469. doi: 10.3390/nu12020469
|
[24] |
FROMENTIN M, RICARD J D, ROUX D. Respiratory microbiome in mechanically ventilated patients: A narrative review[J]. Intensive Care Med, 2021, 47(3): 292-306. doi: 10.1007/s00134-020-06338-2
|
[25] |
RYAN F J, DREW D P, DOUGLAS C, et al. Changes in the composition of the gut microbiota and the blood transcriptome in preterm infants at less than 29 weeks gestation diagnosed with bronchopulmonary dysplasia[J]. Msystems, 2019, 4(5): e00484-19. DOI: 10.1128/mSystems.00484-19.
|
[26] |
DICKSON R P, SINGER B H, NEWSTEAD M W, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome[J]. Nat Microbiol, 2016, 1(10): 16113. DOI: 10.1038/nmicrobiol.2016.113.
|
[27] |
PAMMI M, LAL C V, WAGNER B D, et al. Airway microbiome and development of bronchopulmonary dysplasia in preterm infants: A systematic review[J]. J Pediatr, 2019, 204: 126-133. doi: 10.1016/j.jpeds.2018.08.042
|
[28] |
IMAMURA T, SATO M, GO H, et al. The microbiome of the lower respiratory tract in premature infants with and without severe bronchopulmonary dysplasia[J]. Am J Perinatol, 2017, 34(1): 80-87.
|
[29] |
GAO X Y, DAI Y H, FAN D Z, et al. The association between the microbes in the tracheobronchial aspirate fluid and bronchopulmonary dysplasia in preterm infants[J]. Pediatr Neonatol, 2020, 61(3): 306-310. doi: 10.1016/j.pedneo.2019.12.010
|
[30] |
BREWER M R, MAFFEI D, CERISE J, et al. Determinants of the lung microbiome in intubated premature infants at risk for bronchopulmonary dysplasia[J]. J Matern Fetal Neonatal Med, 2021, 34(19): 3220-3226. doi: 10.1080/14767058.2019.1681961
|
[31] |
LAL C V, KANDASAMY J, DOLMA K, et al. Early airway microbial metagenomic and metabolomic signatures are associated with development of severe bronchopulmonary dysplasia[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 315(5): L810-L815. doi: 10.1152/ajplung.00085.2018
|
[32] |
WAGNER B D, SONTAG M K, HARRIS J K, et al. Airway microbial community turnover differs by bpd severity in ventilated preterm infants[J]. PLoS One, 2017, 12(1): e170120.
|
[33] |
CHUN J, CHUN S H, HAN Y S, et al. Different degrees of maternal ureaplasma colonization and its correlation with bronchopulmonary dysplasia in < 32 weeks' preterm infants[J]. Pediatr Neonatol, 2019, 60(4): 441-446. doi: 10.1016/j.pedneo.2018.11.004
|
[34] |
TRAMPER J, ZHANG H, FOGLIA E E, et al. The association between positive tracheal aspirate cultures and adverse pulmonary outcomes in preterm infants with severe bronchopulmonary dysplasia[J]. Am J Perinatol, 2017, 34(1): 96-104.
|
[35] |
ZHANG X Y, ZHANG X, ZHANG N, et al. Airway microbiome, host immune response and recurrent wheezing in infants with severe respiratory syncytial virus bronchiolitis[J]. Pediatr Allergy Immunol, 2020, 31(3): 281-289.
|
[36] |
彭万胜, 吕平, 董淮富. 重组IL-35-BCG新生儿期接种对实验性哮喘模型Tregs及Th17的影响[J]. 中华全科医学, 2019, 17(9): 1454-1457, 1462. doi: 10.16766/j.cnki.issn.1674-4152.000968
PENG W S, LYU P, DONG H F. Effects of recombinant IL-35-BCG neonatal inoculation on Tregs/Th17 balance in experimental asthma model[J]. Chin J Gen Pract, 2019, 17(9): 1454-1457, 1462. doi: 10.16766/j.cnki.issn.1674-4152.000968
|
[37] |
FINK N R, CHAWES B L, THORSEN J, et al. Neonates colonized with pathogenic bacteria in the airways have a low-grade systemic inflammation[J]. Allergy, 2018, 73(11): 2150-2159.
|
[38] |
THORSEN J, RASMUSSEN M A, WAAGE J, et al. Infant airway microbiota and topical immune perturbations in the origins of childhood asthma[J]. Nat Commun, 2019, 10(1): 5001.
|
[39] |
TAY C, TA L, OW Y Y, et al. Role of upper respiratory microbiota and virome in childhood rhinitis and wheeze: Collegium internationale allergologicum update 2021[J]. Int Arch Allergy Immunol, 2021, 182(4): 265-276.
|
[40] |
TANG H H H F, LANG A, TEO S M, et al. Developmental patterns in the nasopharyngeal microbiome during infancy are associated with asthma risk[J]. J Allergy Clin Immunol, 2021, 147(5): 1683-1691.
|
[41] |
PREVAES S M, DE WINTER-DE G K, JANSSENS H M, et al. Development of the nasopharyngeal microbiota in infants with cystic fibrosis[J]. Am J Respir Crit Care Med, 2016, 193(5): 504-515.
|
[42] |
FRAYMAN K B, WYLIE K M, ARMSTRONG D S, et al. Differences in the lower airway microbiota of infants with and without cystic fibrosis[J]. J Cyst Fibros, 2019, 18(5): 646-652.
|
[43] |
LUYT C E, BOUADMA L, MORRIS A C, et al. Pulmonary infections complicating ARDS[J]. Intensive Care Med, 2020, 46(12): 2168-2183.
|
[44] |
MAN W H, CLERC M, DE STEENHUIJSEN P W, et al. Loss of microbial topography between oral and nasopharyngeal microbiota and development of respiratory infections early in life[J]. Am J Respir Crit Care Med, 2019, 200(6): 760-770.
|
[45] |
KELLY M S, SURETTE M G, SMIEJA M, et al. Pneumococcal colonization and the nasopharyngeal microbiota of children in Botswana[J]. Pediatr Infect Dis J, 2018, 37(11): 1176-1183.
|
[46] |
刘书磊, 吴娥玲, 崔云云, 等. 新生儿院内获得性肺炎患者病原体特征及危险因素分析[J]. 中国微生态学杂志, 2019, 31(4): 449-452. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWS201904018.htm
LIU S L, WU E L, CUI Y Y, et al. Analysis of pathogens, drug sensitivity and risk factors of hospital-acquired pneumonia in neonates[J]. Chin J Microecol, 2019, 31(4): 449-452. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWS201904018.htm
|
[47] |
赵晓红, 罗广立, 杨娟. 气管抽吸标本微生物检测在预测新生儿呼吸机相关性肺炎预后中的应用[J]. 中国微生态学杂志, 2018, 30(10): 1196-1199. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWS201810022.htm
ZHAO X H, LUO G L, YANG J. Microbiological detection of tracheal aspiration specimen in prediction of prognosis of neonatal ventilator-associated pneumonia[J]. Chin J Microecol, 2018, 30(10): 1196-1199. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWS201810022.htm
|
[48] |
党晓平, 胡小剑, 郑玲芳. 新生儿呼吸机相关性肺炎气管导管尖端生物膜菌群分析及其临床意义[J]. 临床肺科杂志, 2021, 26(12): 1829-1833. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFK202112010.htm
DANG X P, HU X J, ZHENG L F. Analysis of biofilm flora at tracheal tube tip in neonates with ventilator-associated pneumonia and its clinical significance[J]. J Clin Pulm Med, 2021, 26(12): 1829-1833. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFK202112010.htm
|
[49] |
TUSOR N, DE CUNTO A, BASMA Y, et al. Ventilator-associated pneumonia in neonates: The role of point of care lung ultrasound[J]. Eur J Pediatr, 2021, 180(1): 137-146.
|
[50] |
PAN Y, SONG S J, TANG X L, et al. Streptococcus sp. in neonatal endotracheal tube biofilms is associated with ventilator-associated pneumonia and enhanced biofilm formation of Pseudomonas aeruginosa PAO1[J]. Sci Rep, 2017, 7(1): 3423.
|