Citation: | MENG Shan, HUI Dong-ming, WANG Kun, LI Zhi-chao. Value of analysis of coal workers' pneumoconiosis nodules based on radiomics combined with clinical factors in predicting the occurrence of lung cancer[J]. Chinese Journal of General Practice, 2023, 21(1): 10-14. doi: 10.16766/j.cnki.issn.1674-4152.002800 |
[1] |
RONSMANS S, NEMERY B. Pneumoconiosis in coal miners: anthracosilicosis after all[J]. Ann Am Thorac Soc, 2022, 19(9): 1451-1452. doi: 10.1513/AnnalsATS.202206-528ED
|
[2] |
SONG Y, SOUTHAM K, BEAMISH B B, et al. Effects of chemical composition on the lung cell response to coal particles: implications for coal workers' pneumoconiosis[J]. Respirology, 2022, 27(6): 447-454. doi: 10.1111/resp.14246
|
[3] |
张建红, 化静. 煤工尘肺并发肺癌的临床分析[J]. 中国继续医学教育, 2021, 13(18): 130-133. https://www.cnki.com.cn/Article/CJFDTOTAL-JXUY202118036.htm
ZHANG J H, HUA J. Clinical Analysis of Coal workers' Pneumoconiosis Complicated With Lung Cancer[J]. China Continuing Medical Education, 2021, 13(18): 130-133. https://www.cnki.com.cn/Article/CJFDTOTAL-JXUY202118036.htm
|
[4] |
YANG X, DONG X, WANG J, et al. Computed tomography-based radiomics signature: a potential indicator of epidermal growth factor receptor mutation in pulmonary adenocarcinoma appearing as a subsolid nodule[J]. Oncologist, 2019, 24(11): e1156-e1164. doi: 10.1634/theoncologist.2018-0706
|
[5] |
YANG R, HUI D M, LI X, et al. Prediction of single pulmonary nodule growth by CT radiomics and clinical features-a one-year follow-up study[J]. Front Oncol, 2022, 12: 1034817. DOI: 10.3389/fonc.2022.1034817.
|
[6] |
梁如意, 董超前, 袁亮, 等. 煤矿粉尘对工人健康损害的流行病学研究进展[J]. 中华劳动卫生职业病杂志, 2022, 40(6): 476-480.
LIANG R Y, DONG C Q, YUAN L, et al. Progress in the epidemiological studies on coal mine dust exposure with workers' health damage[J]. Chinese journal of industrial hygiene and occupational diseases, 2022, 40(6): 476-480.
|
[7] |
ALMBERG K S, FRIEDMAN L S, R0SE C S, et al. Progression of coal workers' pneumoconiosis absent further exposure[J]. Occup Environ Med, 2020, 77(11): 748-751. doi: 10.1136/oemed-2020-106466
|
[8] |
梁伟, 聂继盛. 同煤总医院煤工尘肺并发肺癌病例的危险因素、临床表现和CT征象[J]. 职业与健康, 2020, 36(17): 2321-2325. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYJK202017007.htm
LIANG W, NIE J S. Risk factors, clinical features, and CT characteristics of coal workers' pneumoconiosis complicated with lung cancer in Tongmei General Hospital[J]. Occupation and Health, 2020, 36(17): 2321-2325. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYJK202017007.htm
|
[9] |
GO L H T, COHEN R A. Coal workers' pneumoconiosis and other mining-related lung disease: new manifestations of illness in an age-old occupation[J]. Clin Chest Med, 2020, 41(4): 687-696. doi: 10.1016/j.ccm.2020.08.002
|
[10] |
ALIF S M, SIM M R, HO C, et al. Cancer and mortality in coal mine workers: a systematic review and meta-analysis[J]. Occup Environ Med, 2022, 79(5): 347-357. doi: 10.1136/oemed-2021-107498
|
[11] |
ZWANENBURG A, VALLIERES M, Abdalah M A, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping[J]. Radiology, 2020, 295(2): 328-338. doi: 10.1148/radiol.2020191145
|
[12] |
王海波, 崔薇, 杨玮丽. 基于多序列MRI影像组学预测早期宫颈癌淋巴血管侵犯的研究[J]. 中华全科医学, 2021, 19(12): 2088-2092. doi: 10.16766/j.cnki.issn.1674-4152.002244
WANG H B, WEI W, YANG W L. Multi-sequence MRI-based radiomics predicting lymph-vascular space invasion in early-stage cervical cancer[J]. Chinese Journal of General Practice, 2021, 19(12): 2088-2092. doi: 10.16766/j.cnki.issn.1674-4152.002244
|
[13] |
YANG L, GU D S, WEI J W, et al. A radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. Liver Cancer, 2019, 8(5): 373-386. doi: 10.1159/000494099
|
[14] |
SCHNIERING J, MACIUKIEWICZ M, GABRYS H S, et al. Computed tomography-based radiomics decodes prognostic and molecular differences in interstitial lung disease related to systemic sclerosis[J]. Eur Respir J, 2022, 59(5): 2004503. DOI: 10.1183/13993003.04503-2020.
|
[15] |
AUJAY G, ETCHEGARAY C, BLANC J F, et al. Comparison of MRI-based response criteria and radiomics for the prediction of early response to transarterial radioembolization in patients with hepatocellular carcinoma[J]. Diagn Interv Imaging, 2022, 103(7-8): 360-366. doi: 10.1016/j.diii.2022.01.009
|
[16] |
ZHANG R P, ZHU L, ZHENG T, et al. Potential feature exploration and model development based on 18F-FDG PET/CT images for differentiating benign and malignant lung lesions[J]. Eur J Radiol, 2019, 121: 108735. DOI: 10.1016/j.ejrad.2019.108735.
|
[17] |
GRANATA V, FUSCO R, DE MUZIO F, et al. Contrast MR-based radiomics and machine learning analysis to assess clinical outcomes following liver resection in colorectal liver metastases: a preliminary study[J]. Cancers(Basel), 2022, 14(5): 1110.
|
[18] |
LI X, GUINDANI M, NG C S, et al. Spatial bayesian modeling of GLCM with application to malignant lesion characterization[J]. J Appl Stat, 2018, 46(2): 230-246.
|
[19] |
MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to radiomics[J]. J Nucl Med, 2020, 61(4): 488-495.
|
[20] |
WENG Q, ZHOU L, WANG H, et al. A radiomics model for determining the invasiveness of solitary pulmonary nodules that manifest as part solid nodules[J]. Clin Radiol, 2019, 74(12): 933 943.
|
[21] |
赵诗雨, 何平, 杨成新, 等. 5 272名煤矿接尘工人肺量计数据分析[J]. 中华劳动卫生职业病杂志, 2021, 39(7): 546-549.
YANG S Y, HE P, YANG C X, et al. Analysis of spirometer data of 5272 coal dust-exposed miners[J]. Chinese Journal of Industrial Hygiene and Occupational Diseases, 2021, 39(7): 546-549.
|
[22] |
秦身钧, 陆青锋, 吴士豪, 等. 重庆中梁山晚二叠世煤有机地球化学特征[J]. 煤炭学报, 2018, 43(7): 1973-1982. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807021.htm
QIN S J, LU Q F, WU S H, et al. Organic geochemistry of the Late Permian Coal from the Zhongliangshan mine, Chongqing[J]. Journal of China Coal Society, 2018, 43(7): 1973-1982. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807021.htm
|