Volume 21 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
HOU Xuewen, MENG Yong, HOU Congling, ZHU Danna, HU Yanshen, HOU Chaofeng. Mechanism of Houpo-Mahuang Pair in treating bronchial asthma based on network pharmacology and molecular docking[J]. Chinese Journal of General Practice, 2023, 21(4): 704-708. doi: 10.16766/j.cnki.issn.1674-4152.002964
Citation: HOU Xuewen, MENG Yong, HOU Congling, ZHU Danna, HU Yanshen, HOU Chaofeng. Mechanism of Houpo-Mahuang Pair in treating bronchial asthma based on network pharmacology and molecular docking[J]. Chinese Journal of General Practice, 2023, 21(4): 704-708. doi: 10.16766/j.cnki.issn.1674-4152.002964

Mechanism of Houpo-Mahuang Pair in treating bronchial asthma based on network pharmacology and molecular docking

doi: 10.16766/j.cnki.issn.1674-4152.002964
Funds:

 2019JDZX049

  • Received Date: 2022-02-18
    Available Online: 2023-05-31
  •   Objective  To determine the mechanism of Houpo-Mahuang in treating bronchial asthma through network pharmacology and molecular docking and provide evidence for clinical application.  Methods  Traditional Chinese medicine systems pharmacology database (TCMSP) and Gene Cards databases were used to screen drug and disease targets. Common targets were found after standardised treatment. Cytoscape 3.7.2 software and String database were used to identify main active components and key target information. Gene ontology (GO) and Kyoto encyclopaedia of genes and genomes (KEGG) enrichment analysis were performed using Metascape platform to predict the molecular mechanism of effective components of traditional Chinese medicine acting on diseases. The main effective active components were preliminarily verified by molecular docking with the core targets of diseases.  Results  The main active ingredients of Houpo-Mahuang were quercetin, kaempferol, luteolin, β-sitosterol. The core target proteins were AKT1, IL-6, TNF and TP53. The GO function enrichment obtained 2 044 biological processes, 70 cell components and 165 molecular functions. The KEGG enrichment analysis obtained 329 signalling pathways, mainly including PI3K-Akt signalling pathway, cholinergic synapses, caffeine metabolism and AMPK signalling pathway. The molecular docking showed that the main active ingredients had good binding ability to the core target.  Conclusion  The Houpo-Mahuang treatment of bronchial asthma involves multiple signalling pathways and biological processes, among which the effects of improving airway remodelling, inhibiting airway inflammation, regulating immunity and reducing oxidative stress are mainly achieved through PI3K-Akt signalling pathway, cholinergic synapse, caffeine metabolism and AMPK signalling pathway. Results have certain guiding significance for further clinical research and new drug development.

     

  • loading
  • [1]
    中华医学会呼吸病学分会哮喘学组. 支气管哮喘防治指南(2020年版)[J]. 中华结核和呼吸杂志, 2020, 43(12): 1023-1048. doi: 10.3760/cma.j.cn112147-20200618-00721

    Asthma group of Chinese Throacic Society. Guidelines for bronchial asthma prevent and management(2020 edition) Asthma group of Chinese Throacic Society)[J]. Chinese Journal of Tuberculosis and Respiratory Diseases, 2020, 43(12): 1023-1048. doi: 10.3760/cma.j.cn112147-20200618-00721
    [2]
    DHARMAGE S C, PERRET J L, CUSTOVC A. Epidemiology of asthma in children and adults[J]. Front Pediatr, 2019, 7: 00246. DOI: 10.3389/fped.2019.00246.
    [3]
    李竹英, 王婷, 李寒梅. 外泌体在支气管哮喘发病机制中的作用[J]. 中华全科医学, 2020, 18(2): 291-294. doi: 10.16766/j.cnki.issn.1674-4152.001228

    LI Z Y, WANG T, LI H M. The role of exosomes in the pathogenesis of bronchial asthma[J]. Chinese Journal of General Practice, 2020, 18(2): 291-294. doi: 10.16766/j.cnki.issn.1674-4152.001228
    [4]
    白震宁, 王海萍. 中西医结合治疗支气管哮喘思路探析[J]. 山西中医药大学学报, 2021, 22(2): 135-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAN202102017.htm

    BAI Z N, WANG H P. Thoughts analysis on bronchial asthma treated with integrated traditional Chinese and Western medicine[J]. Journal of Shanxi University of Chinese Medicine, 2021, 22(2): 135-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAN202102017.htm
    [5]
    ZHU H, SHI Y H, JIANG S S, et al. Investigation of the mechanisms of chuankezhi injection in the treatment of asthma based on the network pharmacology approach[J]. Evid-based Compl Alt, 2021, 2021: 5517041. DOI: 10.1155/2021/5517041.
    [6]
    刘嘉燕, 夏鑫华, 龙国豪. 邱志楠治疗哮喘经验[J]. 实用中医药杂志, 2021, 37(5): 881-882. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYAO202105093.htm

    LIU J Y, XIA X H, LONG G H. Qiu Zhinan's experience in treating asthma[J]. Journal of Practical Traditional Chinese Medicine, 2021, 37(5): 881-882. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYAO202105093.htm
    [7]
    余涛, 丁明, 喻强强, 等. 薛汉荣治疗哮喘的学术经验与临证思路[J]. 中国中医基础医学杂志, 2021, 27(4): 655-658. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYJC202104032.htm

    YU T, DING M, YU Q Q, et al. XUE Han-rong's Academic Experience and Clinical Thinking in Treating Asthma[J]. Journal of Basic Chinese Medicine, 2021, 27(4): 655-658. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYJC202104032.htm
    [8]
    任园园, 汤玉梅, 吴振起. 中医古籍哮喘用药规律的数据挖掘研究[J]. 中国中医急症, 2021, 30(3): 402-405. doi: 10.3969/j.issn.1004-745X.2021.03.007

    REN Y Y, TANG Y M, WU Z Q. Medication Rule of Chinese Medicine on Asthma Based on the Data Mining of Traditional Chinese Medicine Ancient Books[J]. Journal of Emergency in Traditional Chinese Medicine, 2021, 30(3): 402-405. doi: 10.3969/j.issn.1004-745X.2021.03.007
    [9]
    焦蕊, 庞立健, 吕晓东. 基于网络药理学探讨三拗汤治疗咳嗽变异型哮喘的作用机制[J]. 中华全科医学, 2021, 19(7): 1218-1223. doi: 10.16766/j.cnki.issn.1674-4152.002025

    JIAO R, PANG L J, LYU X D. Mechanism of San'ao Decoction in treatment of cough variant asthma on the basis of network pharmacology[J]. Chinese Journal of General Practice, 2021, 19(7): 1218-1223. doi: 10.16766/j.cnki.issn.1674-4152.002025
    [10]
    马南, 耑冰, 李萍, 等. 氧化应激失衡在支气管哮喘急性发作中的意义[J]. 中华全科医学, 2019, 17(12): 1993-1997. doi: 10.16766/j.cnki.issn.1674-4152.001110

    MA N, ZHUAN B, LI P, et al. Significance of oxidative stress in acute exacerbation of bronchial asthma[J]. Chinese Journal of General Practice, 2019, 17(12): 1993-1997. doi: 10.16766/j.cnki.issn.1674-4152.001110
    [11]
    胡方媛, 范玉浩, 范欣生, 等. 厚朴麻黄汤对哮喘小鼠气道炎症及TRPA1, TRPV1 mRNA与蛋白表达的影响[J]. 中国实验方剂学杂志, 2020, 26(1): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202001007.htm

    HU F Y, FAN Y H, FAN X S, et al. Effect of Houpu Mahuangtang on Airway Inflammation and Expression of TRPA1, TRPV1 mRNA and Protein in Asthmatic Mice[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2020, 26(1): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202001007.htm
    [12]
    马元, 俞琪珺, 王正霞, 等. 黄酮类化合物对支气管哮喘防治作用的研究进展[J]. 国际呼吸杂志, 2019, 39(5): 373-377.

    MA Y, YU Q J, WANG Z X, et al. Research progress of flavonoids on prevention and treatment of bronchial asthma[J]. International Journal of Respiration, 2019, 39(5): 373-377.
    [13]
    JAFARINIA M, HOSSEINI M S, KASIRI N, et al. Quercetin with the potential effect on allergic diseases[J]. Allergy Asthma Clin Immunol, 2020, 16(3): 1-7.
    [14]
    朱翔, 肖云斌, 易晓莲. 槲皮素对支气管哮喘小鼠气道炎症的作用及机制研究[J]. 中国现代医学杂志, 2020, 30(13): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDY202013005.htm

    ZHU X, XIAO Y B, YI X L. Inhibitory effect of quercetin on airway inflammation in mice with bronchial asthma[J]. China Journal of Modern Medicine, 2020, 30(13): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDY202013005.htm
    [15]
    YANG C L, YANG W K, HE Z H, et al. Kaempferol improves lung ischemia-reperfusion injury via antiinflammation and antioxidative stress regulated by SIRT1/HMGB1/NF-κB Axis[J]. Front Pharmacol, 2019, 10: 01635. DOI: 10.3389/fphar.2019.01635.
    [16]
    蔡蕙荞, 杨子珍, 解玉, 等. 黄酮类化合物木犀草素对哮喘影响的研究近况[J]. 世界最新医学信息文摘, 2019, 19(50): 89-90. https://www.cnki.com.cn/Article/CJFDTOTAL-WMIA201950041.htm

    CAI H Q, YANG Z Z, XIE Y, et al. Recent studies on the effects of flavonoids luteolin on asthma[J]. World Latest Medicine Information, 2019, 19(50): 89-90. https://www.cnki.com.cn/Article/CJFDTOTAL-WMIA201950041.htm
    [17]
    ROGELIO P, GABRIELA F, CELIA R, et al. Evaluation of the anti-inflammatory capacity of beta-sitosterol in rodent assays[J]. Afr J Tradit Complement Altern Med, 2017, 14(1): 123-130. http://www.ajol.info/index.php/ajtcam/article/download/151920/141516
    [18]
    周旋, 谭志团, 任翼, 等. 柚皮素通过抑制NF-κB信号通路减轻哮喘大鼠气道炎症反应[J]. 天津医药, 2021, 49(5): 483-489. https://www.cnki.com.cn/Article/CJFDTOTAL-TJYZ202105008.htm

    ZHOU X, TAN Z T, REN Y, et al. Naringenin reduces airway inflammation in asthmatic rats by inhibiting NF-κB signaling pathway[J]. Tianjin Medical Journal, 2021, 49(5): 483-489. https://www.cnki.com.cn/Article/CJFDTOTAL-TJYZ202105008.htm
    [19]
    SHI R, XU J W, XIAO Z T, et al. Naringin and naringenin relax rat tracheal smooth by regulating BKCa activation[J]. Med Food, 2019, 22(9): 963-970.
    [20]
    XU G, GUO J S, SUN C M. Eucalyptol ameliorates early brain injury after subarachnoid haemorrhage via antioxidant and anti-inflammatory effects in a rat model[J]. Pharm Biol, 2021, 59(1): 114-120. http://www.socolar.com/Article/Index?aid=200259187604&jid=200000001095
    [21]
    LIU D D, PAN J, ZHAO D Y, et al. MicroRNA-223 inhibits deposition of the extracellular matrix by airway smooth muscle cells through targeting IGF-1R in the PI3K/Akt pathway[J]. Am J Transl Res, 2018, 10(3): 744. http://ajtr.org/files/ajtr0063720.pdf
    [22]
    JALEESA G, JARROD W B, STEFANIE K. Targeting cytokines as evolving treatment strategies in chronic inflammatory airway diseases[J]. Int J Mol Sci, 2018, 19(11): 3402. http://www.onacademic.com/detail/journal_1000040905291310_3ef0.html
    [23]
    SINGH S, VERMA S K, KUMAR S, et al. Evaluation of oxidative stress and antioxidant status in chronic obstructive pulmonary disease[J]. Immunol, 2017, 85(2): 130-137. http://doc.paperpass.com/foreign/rgArti20177379340.html
    [24]
    刘嘉研, 李俊峰, 车楠, 等. 梓醇对哮喘小鼠气道炎症及AMPK/ROS/NF-κB信号通路的影响[J]. 郑州大学学报(医学版), 2019, 54(6): 823-827. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYK201906009.htm

    LIU J Y, LI J F, CHE N, et al. Catalpol suppresses airway inflammation via AMPK/ROS/NF-κB signaling pathway in asthmatic mice[J]. Journal of Zhengzhou University (Medical Sciences), 2019, 54(6): 823-827. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYK201906009.htm
    [25]
    冯晓纯, 陈琼芳, 洪天一, 等. 蝎黄解痉治哮颗粒对支气管哮喘模型小鼠肺组织PI3K/AKT通路的影响[J]. 中医杂志, 2021, 62(8): 717-722. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYZ202108017.htm

    FENG X C, CHEN Q F, HONG T Y, et al. Effect of Xiehuang Jiejing Zhixiao Granules on PI3K/AKT Pathway in Lung Tissues of Bronchial Asthma Model Mice[J]. Journal of Traditional Chinese Medicine, 2021, 62(8): 717-722. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYZ202108017.htm
    [26]
    ASHWINI R, DANIEL H, ALICE Y, et al. Cholinergic synapse pathway gene polymorphisms associated with allergen-induced late asthmatic responses[J]. ERJ Open Res, 2019, 5(4). DOI: 10.1183/23120541.00107-2019.
    [27]
    崔鑫洋. 茶碱类药物在支气管哮喘治疗中的合理应用[J]. 中国医药指南, 2021, 19(20): 38-39. https://www.cnki.com.cn/Article/CJFDTOTAL-YYXK202120015.htm

    CUI X Y. Reasonable Application of Theophylline Drugs in Bronchial Asthma Treatment[J]. Guide of China Medicine, 2021, 19(20): 38-39. https://www.cnki.com.cn/Article/CJFDTOTAL-YYXK202120015.htm
    [28]
    WANG W J, MAO L F, LAI H L, et al. Dolutegravir derivative inhibits proliferation and induces apoptosis of non-small cell lung cancer cells via calcium signaling pathway[J]. Pharmacol Res, 2020, 161: 105129. DOI: 10.1016/j.phrs.2020.105129.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (321) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return