Citation: | YAO Caixia, WU Bing, LI Jianbo. Application and value of corneal confocal microscopy in early evaluation and monitoring of diabetic peripheral neuropathy[J]. Chinese Journal of General Practice, 2024, 22(5): 840-844. doi: 10.16766/j.cnki.issn.1674-4152.003516 |
[1] |
POP-BUSUI R, BOULTON A J, FELDMAN E L, et al. Diabetic neuropathy: a position statement by the american diabetes association[J]. Diabetes Care, 2017, 40(1): 136-154. doi: 10.2337/dc16-2042
|
[2] |
SLOAN G, SELVARAJAH D, TESFAYE S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy[J]. Nat Rev Endocrinol, 2021, 17(7): 400-420. doi: 10.1038/s41574-021-00496-z
|
[3] |
KAZAMEL M, STINO A M, SMITH A G. Metabolic syndrome and peripheral neuropathy[J]. Muscle Nerve, 2021, 63(3): 285-293. doi: 10.1002/mus.27086
|
[4] |
LAVERDET B, DANIGO A, GIRARD D, et al. Skin innervation: important roles during normal and pathological cutaneous repair[J]. Histol Histopathol, 2015, 30(8): 875-892.
|
[5] |
PETROPOULOS I N, PONIRAKIS G, KHAN A, et al. Corneal confocal microscopy: ready for prime time[J]. Clin Exp Optom, 2020, 103(3): 265-277. doi: 10.1111/cxo.12887
|
[6] |
RUNDLES R W. Diabetic neuropathy: general review with report of 125 cases[J]. Medicine, 1945, 24(2): 111-160. doi: 10.1097/00005792-194505000-00001
|
[7] |
BÖNHOF G J, HERDER C, STROM A, et al. Emerging biomarkers, tools, and treatments for diabetic polyneuropathy[J]. Endocr Rev, 2019, 40(1): 153-192. doi: 10.1210/er.2018-00107
|
[8] |
ZIEGLER D, BÖNHOF G J, STROM A, et al. Progression and regression of nerve fibre pathology and dysfunction early in diabetes over 5 years[J]. Brain, 2021, 144(10): 3251-3263. doi: 10.1093/brain/awab330
|
[9] |
DEVIGILI G, CAZZATO D, LAURIA G. Clinical diagnosis and management of small fiber neuropathy: an update on best practice[J]. Expert Rev Neurother, 2020, 20(9): 967-980. doi: 10.1080/14737175.2020.1794825
|
[10] |
MALIK R A. Diabetic neuropathy: a focus on small fibres[J]. Diabetes Metab Res Rev, 2020, 36: e3255. DOI: 10.1002/dmrr.3255.
|
[11] |
TERKELSEN A J, KARLSSON P, LAURIA G, et al. The diagnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes[J]. Lancet Neurol, 2017, 16(11): 934-944. doi: 10.1016/S1474-4422(17)30329-0
|
[12] |
MARFURT C F, COX J, DEEK S, et al. Anatomy of the human corneal innervation[J]. Exp Eye Res, 2010, 90(4): 478-492. doi: 10.1016/j.exer.2009.12.010
|
[13] |
ROSZKOWSKA A M, LICITRA C, TUMMINELLO G, et al. Corneal nerves in diabetes-the role of the in vivo corneal confocal microscopy of the subbasal nerve plexus in the assessment of peripheral small fiber neuropathy[J]. Surv Ophthalmol, 2020. DOI: 10.1016/j.survophthal.2020.09.003.
|
[14] |
AL-AQABA M A, DHILLON V K, MOHAMMED I, et al. Corneal nerves in health and disease[J]. Prog Retin Eye Res, 2019, 73: 100762. DOI: 10.1016/j.preteyeres.2019.05.003.
|
[15] |
MEDEIROS C S, SANTHIAGO M R. Corneal nerves anatomy, function, injury and regeneration[J]. Exp Eye Res, 2020, 200: 108243. DOI: 10.1016/j.exer.2020.108243.
|
[16] |
LABETOULLE M, BAUDOUIN C, CALONGE M, et al. Role of corneal nerves in ocular surface homeostasis and disease[J]. Acta Ophthalmol, 2019, 97(2): 137-145. doi: 10.1111/aos.13844
|
[17] |
YU F X, LEE P S Y, YANG L, et al. The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas[J]. Prog Retin Eye Res, 2022, 89: 101039. DOI: 10.1016/j.preteyeres.2021.101039.
|
[18] |
CRUZAT A, QAZI Y, HAMRAH P. In vivo confocal microscopy of corneal nerves in health and disease[J]. Ocul Surf, 2017, 15(1): 15-47. doi: 10.1016/j.jtos.2016.09.004
|
[19] |
YANG A Y, CHOW J, LIU J. Corneal innervation and sensation: The eye and beyond[J]. Yale J Biol Med, 2018, 91(1): 13-21.
|
[20] |
EGGER M D, PETRǍN M. New reflected-light microscope for viewing unstained brain and ganglion cells[J]. Science, 1967, 157(3786): 305-307. doi: 10.1126/science.157.3786.305
|
[21] |
JIA X, WANG X, WANG X, et al. In vivo corneal confocal microscopy detects improvement of corneal nerve parameters following glycemic control in patients with type 2 diabetes[J]. J Diabetes Res, 2018, 2018: 8516276. DOI: 10.1155/2018/8516276.
|
[22] |
ZHAO Y, ZHANG J, PEREIRA E, et al. Automated tortuosity analysis of nerve fibers in corneal confocal microscopy[J]. IEEE Trans Med Imaging, 2020, 39(9): 2725-2737. doi: 10.1109/TMI.2020.2974499
|
[23] |
FERDOUSI M, KALTENIECE A, AZMI S, et al. Diagnosis of neuropathy and risk factors for corneal nerve loss in type 1 and type 2 diabetes: a corneal confocal microscopy study[J]. Diabetes Care, 2021, 44(1): 150-156. doi: 10.2337/dc20-1482
|
[24] |
POLAT O A, ŞENER H, ERKILIÇ K. Corneal nerve fiber and sensitivity loss after repeated intravitreal anti-vegf injections: an in vivo confocal microscopy study[J]. Cornea, 2022, 41(3): 317-321. doi: 10.1097/ICO.0000000000002836
|
[25] |
D ' ONOFRIO L, KALTENIECE A, FERDOUSI M, et al. Small nerve fiber damage and langerhans cells in type 1 and type 2 diabetes and lada measured by corneal confocal microscopy[J]. Invest Ophthalmol Vis Sci, 2021, 62(6): 5. DOI: 10.1167/iovs.62.6.5.
|
[26] |
JIN Y, WANG W, CHEN W, et al. Corneal confocal microscopy: a useful tool for diagnosis of small fiber neuropathy in type 2 diabetes[J]. J Diabetes Investig, 2021, 12(12): 2183-2189. doi: 10.1111/jdi.13616
|
[27] |
DHAGE S, FERDOUSI M, ADAM S, et al. Corneal confocal microscopy identifies small fibre damage and progression of diabetic neuropathy[J]. Sci Rep, 2021, 11(1): 1859. DOI: 10.1038/s41598-021-81302-8.
|
[28] |
KALTENIECE A, FERDOUSI M, AZMI S, et al. Keratocyte density is reduced and related to corneal nerve damage in diabetic neuropathy[J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3584-3590. doi: 10.1167/iovs.18-23889
|
[29] |
KALLINIKOS P, BERHANU M, O ' DONNELL C, et al. Corneal nerve tortuosity in diabetic patients with neuropathy[J]. Invest Ophthalmol Vis Sci, 2004, 45(2): 418-422. doi: 10.1167/iovs.03-0637
|
[30] |
SCHIANO LOMORIELLO D, ABICCA I, PARRAVANO M, et al. Early alterations of corneal subbasal plexus in uncomplicated type 1 diabetes patients[J]. J Ophthalmol, 2019, 2019: 9818217. DOI: 10.1155/2019/9818217.
|
[31] |
FADAVI H, TAVAKOLI M, FODEN P, et al. Explanations for less small fibre neuropathy in South Asian versus European subjects with type 2 diabetes in the UK[J]. Diabetes Metab Res Rev, 2018, 34(7): e3044. DOI: 10.1002/dmrr.3044.
|
[32] |
PELLEGRINI M, SEBASTIANI S, TUCCI L, et al. Association between alterations of corneal sub-basal nerve plexus analyzed with in vivo confocal microscopy and long-term glycemic variability[J]. Eur J Ophthalmol, 2021, 31(5): 2294-2299. doi: 10.1177/1120672120964126
|
[33] |
MISRA S L, SLATER J A, MCGHEE C N J, et al. Corneal confocal microscopy in type 1 diabetes mellitus: a six-year longitudinal study[J]. Transl Vis Sci Technol, 2022, 11(1): 17. doi: 10.1167/tvst.11.1.17
|
[34] |
MAHELKOVÁ G, BURDOVÁ M C, MALÁ S, et al. Higher total insulin dose has positive effect on corneal nerve fibers in dm1 patients[J]. Invest Ophthalmol Vis Sci, 2018, 59(10): 3800-3807. doi: 10.1167/iovs.18-24265
|
[35] |
KALTENIECE A, FERDOUSI M, PETROPOULOS I, et al. Greater corneal nerve loss at the inferior whorl is related to the presence of diabetic neuropathy and painful diabetic neuropathy[J]. Sci Rep, 2018, 8(1): 3283. doi: 10.1038/s41598-018-21643-z
|
[36] |
PRITCHARD N, DEHGHANI C, EDWARDS K, et al. Utility of assessing nerve morphology in central cornea versus whorl area for diagnosing diabetic peripheral neuropathy[J]. Cornea, 2015, 34(7): 756-761. doi: 10.1097/ICO.0000000000000447
|
[37] |
PRITCHARD N, EDWARDS K, RUSSELL A W, et al. Corneal confocal microscopy predicts 4-year incident peripheral neuropathy in type 1 diabetes[J]. Diabetes Care, 2015, 38(4): 671-675. doi: 10.2337/dc14-2114
|
[38] |
PETROPOULOS I N, PONIRAKIS G, KHAN A, et al. Diagnosing diabetic neuropathy: something old, something new[J]. Diabetes Metab J, 2018, 42(4): 255-269. doi: 10.4093/dmj.2018.0056
|
[39] |
PERKINS B A, LOVBLOM L E, BRIL V, et al. Corneal confocal microscopy for identification of diabetic sensorimotor polyneuropathy: a pooled multinational consortium study[J]. Diabetologia, 2018, 61(8): 1856-1861. doi: 10.1007/s00125-018-4653-8
|
[40] |
HAFNER J, ZADRAZIL M, GRISOLD A, et al. Retinal and corneal neurodegeneration and their association with systemic signs of peripheral neuropathy in type 2 diabetes[J]. Am J Ophthalmol, 2020, 209: 197-205. doi: 10.1016/j.ajo.2019.09.010
|
[41] |
PETROPOULOS I N, ALAM U, FADAVI H, et al. Rapid automated diagnosis of diabetic peripheral neuropathy with in vivo corneal confocal microscopy[J]. Invest Ophthalmol Vis Sci, 2014, 55(4): 2071-2078. doi: 10.1167/iovs.13-13787
|
[42] |
STEM M S, HUSSAIN M, LENTZ S I, et al. Differential reduction in corneal nerve fiber length in patients with type 1 or type 2 diabetes mellitus[J]. J Diabetes Complications, 2014, 28(5): 658-661. doi: 10.1016/j.jdiacomp.2014.06.007
|
[43] |
DE CLERCK E E B, SCHOUTEN J, BERENDSCHOT T, et al. Reduced corneal nerve fibre length in prediabetes and type 2 diabetes: the maastricht study[J]. Acta Ophthalmol, 2020, 98(5): 485-491. doi: 10.1111/aos.14359
|
[44] |
MADDALONI E, SABATINO F. In vivo corneal confocal microscopy in diabetes: where we are and where we can get[J]. World J Diabetes, 2016, 7(17): 406-411. doi: 10.4239/wjd.v7.i17.406
|