Citation: | DENG Tianyu, WANG Xiaoyan. The role of GSDME-dependent pyroptosis in renal diseases[J]. Chinese Journal of General Practice, 2024, 22(5): 845-849. doi: 10.16766/j.cnki.issn.1674-4152.003517 |
[1] |
DUBYAK G R, MILLER B A, PEARLMAN E. Pyroptosis in neutrophils: multimodal integration of inflammasome and regulated cell death signaling pathways[J]. Immunol Rev, 2023, 314(1): 229-249. doi: 10.1111/imr.13186
|
[2] |
BURDETTE B E, ESPARZA A N, ZHU H, et al. Gasdermin D in pyroptosis[J]. Acta Pharm Sin B, 2021, 11(9): 2768-2782. doi: 10.1016/j.apsb.2021.02.006
|
[3] |
WEN S, WANG Z H, ZHANG C X, et al. Caspase-3 promotes diabetic kidney disease through Gasdermin E-mediated progression to secondary necrosis during apoptosis[J]. Diabetes Metab Syndr Obes, 2020, 13(10): 313-323.
|
[4] |
CHAI Q Y, YU S S, ZHONG Y Z, et al. A bacterial phospholipid phosphatase inhibits host pyroptosis by hijacking ubiquitin[J]. Science, 2022, 378(6616): eabq0132. DOI: 10.1126/science.abq0132.
|
[5] |
BARNETT K C, LI S R, LIANG K X, et al. A 360° view of the inflammasome: mechanisms of activation, cell death, and diseases[J]. Cell, 2023, 186(11): 2288-2312. doi: 10.1016/j.cell.2023.04.025
|
[6] |
XIA S Y, ZHANG Z B, MAGUPALLI V G, et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1[J]. Nature, 2021, 593(7860): 607-611. doi: 10.1038/s41586-021-03478-3
|
[7] |
KUMARI P, VASUDEVAN S O, RUSSO A J, et al. Host extracellular vesicles confer cytosolic access to systemic LPS licensing non-canonical inflammasome sensing and pyroptosis[J]. Nat Cell Biol, 2023, 25(12): 1860-1872. doi: 10.1038/s41556-023-01269-8
|
[8] |
ZHANG X W, ZHANG P, AN L, et al. Miltirone induces cell death in hepatocellular carcinoma cell through GSDME-dependent pyroptosis[J]. Acta Pharm Sin B, 2020, 10(8): 1397-1413. doi: 10.1016/j.apsb.2020.06.015
|
[9] |
MA F X, GHIMIRE L, REN Q, et al. Gasdermin E dictates inflammatory responses by controlling the mode of neutrophil death[J]. Nat Commun, 2024, 15(1): 386. DOI: 10.1038/s41467-023-44669-y.
|
[10] |
KANG L L, DAI J H, WANG Y F, et al. Blocking Caspase-1/Gsdmd and Caspase-3/-8/Gsdme pyroptotic pathways rescues silicosis in mice[J]. PLoS Genet, 2022, 18(12): e1010515. DOI: 10.1371/journal.pgen.1010515.
|
[11] |
HU Y Q, WEN Q L, CAI Y F, et al. Alantolactone induces concurrent apoptosis and GSDME-dependent pyroptosis of anaplastic thyroid cancer through ROS mitochondria-dependent caspase pathway[J]. Phytomedicine, 2023, 108(1): 154528. DOI: 10.1016/j.phymed.2022.154528.
|
[12] |
WEI Y Y, LAN B D, ZHENG T, et al. GSDME-mediated pyroptosis promotes the progression and associated inflammation of atherosclerosis[J]. Nat Commun, 2023, 14(1): 929. DOI: 10.1038/s41467-023-36614-w.
|
[13] |
NEEL D V, BASU H, GUNNER G, et al. Gasdermin-E mediates mitochondrial damage in axons and neurodegeneration[J]. Neuron, 2023, 111(8): 1222-1240. e9. DOI: 10.1016/j.neuron.2023.02.019.
|
[14] |
REN C X, BAO X W, LU X Z, et al. Complanatoside A targeting NOX4 blocks renal fibrosis in diabetic mice by suppressing NLRP3 inflammasome activation and autophagy[J]. Phytomedicine, 2022, 104(9): 154310. DOI: 10.1016/j.phymed.2022.154310.
|
[15] |
韩振元, 王晓燕. cGAS-STING通路在肾脏疾病中的研究进展[J]. Chinese Journal of General Practice, 2023, 21(12): 2119-2123. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY202312030.htm
|
[16] |
SEARS S M, SISKIND L J. Potential therapeutic targets for cisplatin-induced kidney injury: lessons from other models of AKI and fibrosis[J]. J Am Soc Nephrol, 2021, 32(7): 1559-1567. doi: 10.1681/ASN.2020101455
|
[17] |
SHEN X J, WANG H B, WENG C H, et al. Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy drug-induced nephrotoxicity[J]. Cell Death Dis, 2021, 12(2): 186. DOI: 10.1038/s41419-021-03458-5.
|
[18] |
XIA W W, LI Y Y, WU M Y, et al. Gasdermin E deficiency attenuates acute kidney injury by inhibiting pyroptosis and inflammation[J]. Cell Death Dis, 2021, 12(2): 139. DOI: 10.1038/s41419-021-03431-2.
|
[19] |
AI Y L, WANG W J, LIU F J, et al. Mannose antagonizes GSDME-mediated pyroptosis through AMPK activated by metabolite GlcNAc-6P[J]. Cell Res, 2023, 33(12): 904-922. doi: 10.1038/s41422-023-00848-6
|
[20] |
WANG Z, GU Z Y, HOU Q, et al. Zebrafish GSDMEb cleavage-gated pyroptosis drives septic acute kidney injury in vivo[J]. J Immunol, 2020, 204(7): 1929-1942. doi: 10.4049/jimmunol.1901456
|
[21] |
DING Z H, ZHAO J, WANG X F, et al. Total extract of Abelmoschus manihot L. alleviates uric acid-induced renal tubular epithelial injury via inhibition of caspase-8/caspase-3/NLRP3/GSDME signaling[J]. Front Pharmacol, 2022, 13(8): 907980. DOI: 10.3389/fphar.2022.907980.
|
[22] |
ZHANG C Y, WANG X R, NIE G H, et al. In vivo assessment of molybdenum and cadmium co-induce nephrotoxicity via NLRP3/Caspase-1-mediated pyroptosis in ducks[J]. J Inorg Biochem, 2021, 224(11): 111584. DOI: 10.1016/j.jinorgbio.2021.111584.
|
[23] |
SHENG Y T, ZHANG C P, CAI D D, et al. 2, 2 ', 4, 4 ' -Tetrabromodiphenyl ether and cadmium co-exposure activates aryl hydrocarbon receptor pathway to induce ROS and GSDME-dependent pyroptosis in renal tubular epithelial cells[J]. Environ Toxicol, 2024, 39(1): 289-298. doi: 10.1002/tox.23957
|
[24] |
LIU W N, GAN Y J, DING Y, et al. Autophagy promotes GSDME-mediated pyroptosis via intrinsic and extrinsic apoptotic pathways in cobalt chloride-induced hypoxia reoxygenation-acute kidney injury[J]. Ecotoxicol Environ Saf, 2022, 242(7): 113881. DOI: 10.1016/j.ecoenv.2022.113881.
|
[25] |
LI S Y, FENG L F, LI G R, et al. GSDME-dependent pyroptosis signaling pathway in diabetic nephropathy[J]. Cell Death Discov, 2023, 9(1): 156. DOI: 10.1038/s41420-023-01452-8.
|
[26] |
WU M Y, XIA W W, JIN Q Q, et al. Gasdermin E deletion attenuates ureteral obstruction- and 5/6 nephrectomy-induced renal fibrosis and kidney dysfunction[J]. Front Cell Dev Biol, 2021, 9(10): 754134. DOI: 10.3389/fcell.2021.754134.
|
[27] |
LUO G H, HE Y, YANG F Y, et al. Blocking GSDME-mediated pyroptosis in renal tubular epithelial cells alleviates disease activity in lupus mice[J]. Cell Death Discov, 2022, 8(1): 113. DOI: 10.1038/s41420-022-00848-2.
|
[28] |
YAO L, LI J N, XU Z J, et al. GSDMs are potential therapeutic targets and prognostic biomarkers in clear cell renal cell carcinoma[J]. Aging (Albany NY), 2022, 14(6): 2758-2774.
|
[29] |
LI Y S, YUAN Y, HUANG Z X, et al. GSDME-mediated pyroptosis promotes inflammation and fibrosis in obstructive nephropathy[J]. Cell Death Differ, 2021, 28(8): 2333-2350. doi: 10.1038/s41418-021-00755-6
|
[30] |
ZHANG Y, YIN K, WANG D X, et al. Polystyrene microplastics-induced cardiotoxicity in chickens via the ROS-driven NF-κB-NLRP3-GSDMD and AMPK-PGC-1α axes[J]. Sci Total Environ, 2022, 840(9): 156727. DOI: 10.1016/j.scitotenv.2022.156727.
|
[31] |
WU M, YANG Z F, ZHANG C Y, et al. Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy[J]. Metabolism, 2021, 118(3): 154748. DOI: 10.1016/j.metabol.2021.154748.
|
[32] |
HAGMANN H, KHAYYAT N H, MATIN M, et al. Capsazepine (CPZ) inhibits TRPC6 conductance and is protective in adriamycin-induced nephropathy and diabetic glomerulopathy[J]. Cells, 2023, 12(2): 271. DOI: 10.3390/cells12020271.
|
[33] |
ZHAI Z Q, YANG F Y, XU W C, et al. Attenuation of rheumatoid arthritis through the inhibition of tumor necrosis factor-induced Caspase 3/Gasdermin E-Mediated pyroptosis[J]. Arthritis Rheumatol, 2022, 74(3): 427-440. doi: 10.1002/art.41963
|
[34] |
ZHANG B L, YU P, SU E Y, et al. Inhibition of GSDMD activation by Z-LLSD-FMK or Z-YVAD-FMK reduces vascular inflammation and atherosclerotic lesion development in ApoE-/- mice[J]. Front Pharmacol, 2023, 14(8): 1184588. DOI: 10.3389/fphar.2023.1184588.
|
[35] |
FIROOZPOUR L, GAO L, MOGHIMI S, et al. Efficient synthesis, biological evaluation, and docking study of isatin based derivatives as caspase inhibitors[J]. J Enzyme Inhib Med Chem, 2020, 35(1): 1674-1684. doi: 10.1080/14756366.2020.1809388
|
[36] |
XU W F, ZHANG Q, DING C J, et al. Gasdermin E-derived caspase-3 inhibitors effectively protect mice from acute hepatic failure[J]. Acta Pharmacol Sin, 2021, 42(1): 68-76. doi: 10.1038/s41401-020-0434-2
|
[37] |
ZHANG X M, XIE L, LONG J Y, et al. Salidroside: a review of its recent advances in synthetic pathways and pharmacological properties[J]. Chem Biol Interact, 2021, 339(3): 109268. DOI: 10.1016/j.cbi.2020.109268.
|
[38] |
WANG X H, QIAN J, MENG Y, et al. Salidroside ameliorates severe acute pancreatitis-induced cell injury and pyroptosis by inactivating Akt/NF-κB and caspase-3/GSDME pathways[J]. Heliyon, 2023, 9(2): e13225. DOI: 10.1016/j.heliyon.2023.e13225.
|
[39] |
HU L, CHEN M, CHEN X R, et al. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate[J]. Cell Death Dis, 2020, 11(4): 281. DOI: 10.1038/s41419-020-2476-2.
|