Citation: | CHEN Xianhui, MA Yulan. Research progress on the relationship between trimethylamine oxide and atrial fibrillation[J]. Chinese Journal of General Practice, 2024, 22(6): 1033-1037. doi: 10.16766/j.cnki.issn.1674-4152.003560 |
[1] |
ZUO K, LI J, LI K B, et al. Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation[J]. Giga science, 2019, 8: giz058. DOI: 10.1093/Gigascience/giz058.
|
[2] |
SARIM R, TAYYIBA A N, HAMAYLE S, et al. Association of gut microbiome dysbiosis with the progression of atrial fibrillation: a systematic review[J]. Ann Noninvasive Electrocardiol, 2023, 28: e13059. DOI: 10.1111/anec.13059.
|
[3] |
YANG W T, YANG R, ZHAO Q, et al. A systematic review and meta-analysis of the gut microbiotadependent metabolite trimethylamine N-oxide with the incidence of atrial fibrillation[J]. Ann Palliat Med, 2021, 10(11): 11512-11523. doi: 10.21037/apm-21-2763
|
[4] |
XU J, YANG Y J. Gut microbiome and its metaomics perspectives: profound implications for cardiovascular diseases[J]. Gut Microbes, 2021, 13(1): e1936379. DOI: 10.1080/19490976.2021.1936379.
|
[5] |
GATAREK P, KALUZNA-CZAPLINSKA J. Trimethylamine N-oxide (TMAO) in human health[J]. Excli J, 2021, 20: 301-319.
|
[6] |
ZHEN J, ZHOU Z, HE M, et al. The gut microbial metabolite trimethylamine N-oxide and cardiovascular diseases[J]. Front Endocrinol, 2023, 14: 1085041. DOI: 10.3389/fendo.2023.1085041.
|
[7] |
SVINGEN G F T, ZUO H, UELAND P M, et al. Increased plasma trimethylamine-N-oxide is associated with incident atrial fibrillation[J]. Int J Cardiol, 2018, 267: 100-106. doi: 10.1016/j.ijcard.2018.04.128
|
[8] |
XU F, FU Y, SUN T Y, et al. The interplay between host genetics and the gut microbiome reveals common and distinct microbiome features for complex human diseases[J]. Microbiome, 2020, 8(1): 145. DOI: 10.1186/s40168-020-00923-9.
|
[9] |
ZUO K, LIU X Q, WANG P, et al. Metagenomic data-mining reveals enrichment of trimethylamine-N-oxide synthesis in gut microbiome in atrial fibrillation patients[J]. BMC Genomics, 2020, 21(1): 526. DOI: 10.1186/s12864-020-06944-w.
|
[10] |
ANDREEA-IOANA I, MARIA-ADRIANA N, ANCA-ELENA C, et al. Gut molecules in cardiometabolic diseases: the mechanisms behind the story[J]. Int J Mol Sci, 2023, 24: 3385. DOI: 10.3390/ijms24043385.
|
[11] |
MONIKA G, THOMAS A A, ARNELA S, et al. Gut microbiota, dysbiosis and atrial fibrillation. Arrhythmogenic mechanisms and potential clinical implications[J]. Cardiovasc Res, 2022, 118(11): 2415-2427. doi: 10.1093/cvr/cvab292
|
[12] |
HOSEINI T Z, HASANI R S. Targeting TMAO and its metabolic pathway for cardiovascular diseases treatment[J]. J Diabetes Metab Disord, 2021, 20(1): 1095-1097. doi: 10.1007/s40200-021-00819-x
|
[13] |
ZHOU X, JIN M, LIU L, et al. Trimethylamine N-oxide and cardiovascular outcomes in patients with chronic heart failure after myocardial infarction[J]. ESC Heart Fail, 2020, 7(1): 188-193.
|
[14] |
GENG J, YANG C C, WANG B J, et al. Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway[J]. Biomed Pharmacother, 2018, 97: 941-947. doi: 10.1016/j.biopha.2017.11.016
|
[15] |
LUO T, LIU D, GUO Z, et al. Deficiency of proline/serine-rich coiled-coil protein 1 (PSRC1) accelerates trimethylamine N-oxide-induced atherosclerosis in ApoE-/- mice[J]. Mol Cell Cardiol, 2022, 70: 60-74.
|
[16] |
杨晓明, 郑祥, 王超超. 肠道菌群代谢产物与冠心病合并慢性心力衰竭的相关性及对患者预后水平的预测作用[J]. 中华全科医学, 2023, 21(10): 1676-1678, 1718. doi: 10.16766/j.cnki.issn.1674-4152.003198
YANG X M. ZHENG X, WANG C C. Correlation between gut microbiota metabolites and coronary heart disease combined with chronic heart failure and its predictive role in patient prognosis[J]. Chinese Journal of General Practice, 2023, 21(10): 1676-1678, 1718. doi: 10.16766/j.cnki.issn.1674-4152.003198
|
[17] |
CORBAN M T, TOYA T, AHMAD A, et al. Atrial fibrillation and endothelial dysfunction: a potential link?[J]. Mayo Clin Proc, 2021, 96(6): 1609-1621. doi: 10.1016/j.mayocp.2020.11.005
|
[18] |
GE X Y, LIANG Z, ZHUANG R L, et al. The gut microbial metabolite trimethylamine N-oxide and hypertension risk: a systematic review and dose-response meta-analysis[J]. Adv Nutr, 2020, 11(1): 66-76. doi: 10.1093/advances/nmz064
|
[19] |
BVTTNER P, OKUN J G, HAUKE J, et al. Trimethylamine N-oxide in atrial fibrillation progression[J]. Int J Heart Vasc, 2020, 29: 100554. DOI: 10.1016/j.ijcha.2020.100554.
|
[20] |
LIU M, HAN Q, YANG J. Trimethylamine-N-oxide (TMAO) increased aquaporin-2 expression in spontaneously hypertensive rats[J]. Clin Exp Hypertens, 2019, 41(4): 312-322. doi: 10.1080/10641963.2018.1481420
|
[21] |
DAGFNN A, YAHYA M S, ELSA K, et al. Blood pressure, hypertension and the risk of atrial fbrillation: a systematic review and meta-analysis of cohort studies[J]. Eur J Epidemiol, 2023, 38: 145-178. doi: 10.1007/s10654-022-00914-0
|
[22] |
LI X L, GENG J, ZHAO J X, et al. Trimethylamine N-oxide exacerbates cardiac fibrosis via activating the NLRP3 inflammasome[J]. Front Physiol, 2019, 10: 866. DOI: 10.3389/fphys.2019.00866.
|
[23] |
TABATA T, YAMASHITA T, HOSOMI K, et al. Gut microbial composition in patients with atrial fibrillation: effects of diet and drugs[J]. Heart Vessels, 2021, 36(1): 105-114. doi: 10.1007/s00380-020-01669-y
|
[24] |
YANG W, ZHAO Q, YAO M, et al. The transformation of atrial fibroblasts into myofibroblasts is promoted by trimethylamine N-oxide via the Wnt3a/β-catenin signaling pathway[J]. J Thorac Dis, 2022, 14(5): 1526-1536. doi: 10.21037/jtd-22-475
|
[25] |
HUANG R, LI Y, LEI Y H. The gut microboal-derived metabolite trimethyamine n-oxide and atrial fibrillation: relationships, mechanisms, and therapeutic strategies[J]. Clin interv Aging, 2021, 16: 1975-1986. DOI: 10.2147/CIA.S339590.
|
[26] |
WANG G J, KONG B, SHUAI W, et al. 3, 3-Dimethyl-1-butanol attenuates cardiac remodeling in pressure-overload-induced heart failure mice[J]. J Nutr Biochem, 2020, 78: 108341. DOI: 10.1016/j.jnutbio.2020.108341.
|
[27] |
LUO Y C, ZAHNG Y, HAN X J, et al. Akkermansia muciniphila prevents cold-related atrial fibrillation in rats by modulation of TMAO induced cardiac pyroptosis[J]. E Bio Med, 2022, 82: 104087. DOI: 10.1016/j.ebiom.2022.104087.
|
[28] |
MICHELLE T L, DARAE K, LINDSAY M A, et al. Gastrointestinal and liver diseases and atrial fibrillation: a review of the literature[J]. Therap Adv Gastroenterol, 2019, 12: 1-19. DOI: 10.1177/1756284819832237.
|
[29] |
MENG G N, ZHOU X A, WANG M L, et al. Gut microbe-derived metabolite trimethylamine N-oxide activates the cardiac autonomic nervous system and facilitates ischemia-induced ventricular arrhythmia via two different pathways[J]. E Bio Med, 2019, 44: 656-664.
|
[30] |
YU L, MENG G, HUANG B, et al. A potential relationship between gut microbes and atrial fibrillation: trimethylamine N-oxide, a gut microbe-derived metabolite, facilitates the progression of atrial fibrillation[J]. Int J Cardiol, 2018, 255: 92-98. doi: 10.1016/j.ijcard.2017.11.071
|
[31] |
HUANG R, LI Y, LEI Y H. The gut microboal-derived metabolite trimethyamine N-oxide and atrial fibrillation: relationships, mechanisms, and therapeutic strategies[J]. Clin interv Aging, 2021, 16: 1975-1986. doi: 10.2147/CIA.S339590
|
[32] |
LIANG Z G, DONG Z X, GUO M H, et al. Trimethyiamine N-oxide as a risk marker for ischemic stroke in patients with atrial fibrillation[J]. J Biochem Mol Toxiciol, 2019, 33: e22246. DOI: 10.1002/jbt.22246.
|
[33] |
LUCIANI M, MVLLER D, VANETTA C, et al. Trimethylamine-N-oxide is associated with cardiovascular mortality and vascular brain lesions in patients with atrialfibrillation[J]. Heart, 2023, 109(5): 396-404.
|
[34] |
GONG D X, ZHANG L, ZHANG Y, et al. Gut microbial metabolite trimethylamine N-oxide is related to thrombus formation in atrial fibrillation patients[J]. Am J Med Sci, 2019, 358(6): 422-428. doi: 10.1016/j.amjms.2019.09.002
|
[35] |
HUYNH K. Novel gut microbiota-derived metabolite promotes platelet thrombosis via adrenergic receptor signalling[J]. Nat Rev Cardiol, 2020, 17(5): 265. doi: 10.1038/s41569-020-0367-y
|
[36] |
KONIECZNY R, ZŻURAWSKA-P E, KAAZ K, et al. All-cause mortality and trimethylamine N-oxide levels in patients with cardiovascular disease[J]. Cardiology, 2022, 147(4): 443-452. doi: 10.1159/000525972
|
[37] |
ZUO K, LI J, WANG P, et al. Duration of persistent atrial fibrillation is associated with alterations in human gut microbiota and metabolic phenotypes[J]. mSystems, 2019, 4(6): e00422-19. DOI: 10.1128/mSystems.00422-19.
|
[38] |
ZUO K, FANG C, LIU Z. Commensal microbederived SCFA alleviates atrial fibrillation via GPR43/NLRP3signaling[J]. Int J Biol Sci, 2022, 18(10): 4219-4232. doi: 10.7150/ijbs.70644
|
[39] |
RASHID S, NOOR TA, SAEED H, et al. Association of gut microbiome dysbiosis with the progression of atrial fibrillation: a systematic review[J]. Ann Noninvasive Electrocardiol, 2023, 28(4): e13059. DOI: 10.1111/anec.13059.
|
[40] |
ALDANA-HERNANDEZ P, LEONARD K A, ZHAO Y Y, et al. Dietary choline or trimethylamine N-oxide supplementation does not influence atherosclerosis development in Ldlr-/- and Apoe-/- male mice[J]. J Nutr, 2020, 150: 249-255. doi: 10.1093/jn/nxz214
|
[41] |
GAWAŁKO M, LINZ D, DOBREV D. Gut-microbiota derived TMAO: a risk factor, a mediator or a bystander in the pathogenesis of atrial fibrillation?[J]. Int J Cardiol Heart Vasc, 2021, 34: 100818. DOI: 10.1016/j.ijcha2021.100818.
|
[42] |
SMITS L P, KOOTTE R S, LEVIN E, et al. Effect of vegan fecal microbiota transplantation on carnitine-and choline-derived trimethylamine-N-oxide production and vascular inflammation in patients with metabolic syndrome[J]. J Am Heart Assoc, 2018, 7(7): e008342. doi: 10.1161/JAHA.117.008342
|
[43] |
CHI E, LI C, WU D, et al. Effects of probiotics on patientswith hypertension: a systematic review and meta-analysis[J]. Curr Hypertens Rep, 2020, 22(5): 34. DOI: 10.1007/s11906-020-01042-4.
|
[44] |
ZHOU W Y, CHENG Y Y, ZHU P, et al. Implication of Gut Microbiota in Cardiovascular Diseases[J]. Oxid Med Cell Longev, 2020, DOI: 10.1155/2020/5394096.
|