Citation: | MU Yapeng, ZHUANG Xianghua, SONG Yuwen, XU Peichen, LOU Nengjun, CHEN Shihong. The advancing research progress of the correlation and mechanism between osteoporosis and bacterial flora[J]. Chinese Journal of General Practice, 2024, 22(6): 1038-1042. doi: 10.16766/j.cnki.issn.1674-4152.003561 |
[1] |
PODLESNY D, FRICKE W F. Strain inheritance and neonatal gut microbiota development: a meta-analysis[J]. Int J Med Microbiol, 2021, 311(3): 151483. DOI: 10.1016/j.ijmm.2021.151483.
|
[2] |
VALLES-COLOMER M, BLANCO-MÍGUEZ A, MANGHI P, et al. The person-to-person transmission landscape of the gut and oral microbiomes[J]. Nature, 2023, 614(7946): 125-135. doi: 10.1038/s41586-022-05620-1
|
[3] |
BURCELIN R. Gut microbiota and immune crosstalk in metabolic disease[J]. Mol Metab, 2016, 5(9): 771-781. doi: 10.1016/j.molmet.2016.05.016
|
[4] |
DEBRÉ P, LE GALL J Y, Commission I (Biologie). Intestinal microbiota[J]. Bull Acad Natl Med, 2014, 198(9): 1667-1684.
|
[5] |
赵萌, 杨轶童, 李翰文, 等. 肠道微生物菌群与川崎病关系研究进展[J]. 陕西医学杂志, 2024, 53(2): 270-273, 281. doi: 10.3969/j.issn.1000-7377.2024.02.027
ZHAO M, YANG Y T, LI H W, et al. Research progress on relationship between gut microbiota and Kawasaki disease[J]. Shanxi Medical Journal, 2024, 53(2): 270-273, 281. doi: 10.3969/j.issn.1000-7377.2024.02.027
|
[6] |
中华医学会骨质疏松和骨矿盐疾病分会, 章振林. 原发性骨质疏松症诊疗指南(2022)[J]. 中国全科医学, 2023, 26(14): 1671-1691. doi: 10.12114/j.issn.1007-9572.2023.0121
Chinese Society of Osteoporosis and Bone Mineral Salt Diseases, ZHANG Z L. Guidelines for the Diagnosis and Treatment of Primary Osteoporosis(2022)[J]. Chinese General Practice, 2023, 26(14): 1671-1691. doi: 10.12114/j.issn.1007-9572.2023.0121
|
[7] |
FALONY G, VIEIRA-SILVA S, RAES J. Microbiology meets big data: the case of gut microbiota-derived trimethylamine[J]. Annu Rev Microbiol, 2015, 69: 305-321. doi: 10.1146/annurev-micro-091014-104422
|
[8] |
朱双, 汤帅, 丁刚. 口腔菌群与口腔疾病及全身性疾病关系的研究进展[J]. 中国医药导报, 2023, 20(18): 35-38, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202318008.htm
ZHU S, TANG S, DING G. Research progress on the relationship between oral flora and oral diseases and systemic diseases[J]. China Medicine Herald, 2023, 20(18): 35-38, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202318008.htm
|
[9] |
何姣姣, 陈玉林, 张敏, 等. 肠道菌群在骨质疏松症发病机制中的研究[J]. 中国骨质疏松杂志, 2023, 29(8): 1197-1202. doi: 10.3969/j.issn.1006-7108.2023.08.018
HE J J, CHEN Y L, ZHANG M, et al. Study on the role of intestinal microflora in the pathogenesis of osteoporosis[J]. Chinese Journal of Osteoporosis, 2023, 29(8): 1197-1202. doi: 10.3969/j.issn.1006-7108.2023.08.018
|
[10] |
ALQRANEI M S, SENBANJO L T, ALJOHANI H, et al. Lipopolysaccharide-TLR-4 axis regulates osteoclastogenesis independent of RANKL/RANK signaling[J]. BMC Immunol, 2021, 22(1): 23. doi: 10.1186/s12865-021-00409-9
|
[11] |
陈浩彬, 罗世城, 曹祚, 等. 应用16S rDNA扩增子序列分析去卵巢骨丢失小鼠口腔菌群的变化[J]. 解放军医学院学报, 2023, 44(4): 401-407, 433. https://www.cnki.com.cn/Article/CJFDTOTAL-JYJX202304013.htm
CHEN H B, LUO S C, CAO Z, et al. Oral microbiota changes of bone loss mice induced by ovariectomy via 16S rDNA amplicon sequencing[J]. Journal of the PLA Medical College, 2023, 44(4): 401-407, 433. https://www.cnki.com.cn/Article/CJFDTOTAL-JYJX202304013.htm
|
[12] |
LI J Y, CHASSAING B, TYAGI A M, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics[J]. J Clin Invest, 2016, 126(6): 2049-2063. doi: 10.1172/JCI86062
|
[13] |
祝启丽, 刘洋. 青春期肠道菌群特征及性别二态性研究进展[J]. 中国学校卫生, 2023, 44(11): 1752-1755, 1760. https://www.cnki.com.cn/Article/CJFDTOTAL-XIWS202311034.htm
ZHU Q L, LIU Y. Recent advances in intestinal flora characteristics and sexual dimorphism during puberty[J]. Chinese Journal of School Health, 2023, 44(11): 1752-1755, 1760. https://www.cnki.com.cn/Article/CJFDTOTAL-XIWS202311034.htm
|
[14] |
OOI J H, LI Y, ROGERS C J, et al. Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis[J]. J Nutr, 2013, 143(10): 1679-1686. doi: 10.3945/jn.113.180794
|
[15] |
OHLSSON C, ENGDAHL C, FÅK F, et al. Probiotics protect mice from ovariectomy-induced cortical bone loss[J]. PLoS One, 2014, 9(3): e92368. DOI: 10.1371/journal.pone.0092368.
|
[16] |
武士清. 人甲状旁腺激素对糖尿病大鼠骨质疏松的影响及其分子机制的研究[D]. 济南: 山东大学, 2020.
WU S Q, Effects of human parathyroid hormone on osteoporosis in diabetic rats and its molecular mechanism[D]. Jinan: Shandong University, 2020.
|
[17] |
LI J Y, YU M, PAL S, et al. Parathyroid hormone-dependent bone formation requires butyrate production by intestinal microbiota[J]. J Clin Invest, 2020, 130(4): 1767-1781. doi: 10.1172/JCI133473
|
[18] |
SJÖGREN K, ENGDAHL C, HENNING P, et al. The gut microbiota regulates bone mass in mice[J]. J Bone Miner Res, 2012, 27(6): 1357-1367. doi: 10.1002/jbmr.1588
|
[19] |
YAN J, HERZOG J W, TSANG K, et al. Gut microbiota induce IGF-1 and promote bone formation and growth[J]. Proc Natl Acad Sci USA, 2016, 113(47): E7554-E7563.
|
[20] |
ZHAO W, LIU Y, CAHILL C M, et al. The role of T cells in osteoporosis, an update[J]. Int J Clin Exp Pathol, 2009, 2(6): 544-552.
|
[21] |
ATARASHI K, TANOUE T, SHIMA T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species[J]. Science, 2011, 331(6015): 337-341. doi: 10.1126/science.1198469
|
[22] |
ZHANG J, MOTYL K J, IRWIN R, et al. Loss of bone and Wnt10b expression in male type 1 diabetic mice is blocked by the probiotic lactobacillus reuteri[J]. Endocrinology, 2015, 156(9): 3169-3182. doi: 10.1210/EN.2015-1308
|
[23] |
MUTUŞ R, KOCABAGLI N, ALP M, et al. The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers[J]. Poult Sci, 2006, 85(9): 1621-1625. doi: 10.1093/ps/85.9.1621
|
[24] |
袁鹏, 董万涛, 张杰, 等. 肠道微生物代谢产物丁酸对骨代谢机制的研究进展[J]. 中国骨质疏松杂志, 2023, 29(11): 1712-1716. doi: 10.3969/j.issn.1006-7108.2023.11.027
YUAN P, DONG W T, ZHANG J, et al. Research progress on the mechanism of butyric acid, a metabolic product of gut microbiota, on bone metabolism[J]. Chinese Journal of Osteoporosis, 2023, 29(11): 1712-1716. doi: 10.3969/j.issn.1006-7108.2023.11.027
|
[25] |
AKINSUYI O S, ROESCH L F W. Meta-analysis reveals compositional and functional microbial changes associated with osteoporosis[J]. Microbiol Spectr, 2023, 11(3): e0032223. DOI: 10.1128/spectrum.00322-23.
|
[26] |
CHE Y T, YANG J Z, TANG F, et al. New function of cholesterol oxidation products involved in osteoporosis pathogenesis[J]. Int J Mol Sci, 2022, 23(4): 2020. DOI: 10.3390/ijms23042020.
|
[27] |
KAJIMURA D, HINOI E, FERRON M, et al. Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual[J]. J Exp Med, 2011, 208(4): 841-851. doi: 10.1084/jem.20102608
|
[28] |
PAWLAK D, DOMANIEWSKI T, ZNORKO B, et al. The impact of peripheral serotonin on leptin-brain serotonin axis, bone metabolism and strength in growing rats with experimental chronic kidney disease[J]. Bone, 2017, 105: 1-10. doi: 10.1016/j.bone.2017.08.004
|
[29] |
CHAO C K, ZEISEL S H. Formation of trimethylamine from dietary choline by Streptococcus sanguis Ⅰ, which colonizes the mouth[J]. J Nutr Biochem, 1990, 1(2): 89-97. doi: 10.1016/0955-2863(90)90055-P
|
[30] |
赵阳婷, 陈重阳, 潘斌晶, 等. 三甲胺N-氧化物: 骨质疏松治疗的潜在靶点[J]. 中国临床药理学与治疗学, 2023, 28(10): 1161-1167. https://www.cnki.com.cn/Article/CJFDTOTAL-YLZL202310010.htm
ZHAO Y T, CHEN C Y, PAN B J, et al. Trimethylamine N-oxide: a potential target for osteoporosis treatment[J]. Chinese Clinical Pharmacology and Therapeutics, 2023, 28(10): 1161-1167. https://www.cnki.com.cn/Article/CJFDTOTAL-YLZL202310010.htm
|
[31] |
SUN Y, ZHANG H J, CHEN R, et al. 16S rDNA analysis of osteoporotic rats treated with osteoking[J]. J Med Microbiol, 2022, 71(6). DOI: 10.1099/jmm.0.001552.
|
[32] |
ZHANG R K, YAN K, CHEN H F, et al. Anti-osteoporotic drugs affect the pathogenesis of gut microbiota and its metabolites: a clinical study[J]. Front Cell Infect Microbiol, 2023, 13: 1091083. DOI: 10.3389/fcimb.2023.1091083.
|
[33] |
RIAHI H S, HEIDARIEH P, FATAHI-BAFGHI M. Genus Pseudonocardia: what we know about its biological properties, abilities and current application in biotechnology[J]. J Appl Microbiol, 2022, 132(2): 890-906. doi: 10.1111/jam.15271
|
[34] |
WOO C Y, KIM J. Variovorax terrae sp. nov. Isolated from soil with potential antioxidant activity[J]. J Microbiol Biotechnol, 2022, 32(7): 855-861. doi: 10.4014/jmb.2205.05018
|
[35] |
BRAUN B, RICHERT I, SZEWZYK U. Detection of iron-depositing Pedomicrobium species in native biofilms from the Odertal National Park by a new, specific FISH probe[J]. J Microbiol Methods, 2009, 79(1): 37-43. doi: 10.1016/j.mimet.2009.07.014
|
[36] |
HUANG R, LIU P, BAI Y G, et al. Changes in the gut microbiota of osteoporosis patients based on 16S rRNA gene sequencing: a systematic review and meta-analysis[J]. J Zhejiang Univ Sci B, 2022, 23(12): 1002-1013. doi: 10.1631/jzus.B2200344
|
[37] |
LIANG H L, JI K, GE X P, et al. Methionine played a positive role in improving the intestinal digestion capacity, anti-inflammatory reaction and oxidation resistance of grass carp, Ctenopharyngodon idella, fry[J]. Fish Shellfish Immunol, 2022, 128: 389-397. doi: 10.1016/j.fsi.2022.07.066
|
[38] |
JONES M L, MARTONI C J, PRAKASH S. Oral supplementation with probiotic L. reuteri NCIMB 30 242 increases mean circulating 25-hydroxyvitamin D: a post hoc analysis of a randomized controlled trial[J]. J Clin Endocrinol Metab, 2013, 98(7): 2944-2951. doi: 10.1210/jc.2012-4262
|
[39] |
周冬燕, 陆瑶伽, 蔡琪. 更年期女性因骨质疏松导致牙齿脱落的影响因素分析[J]. 中国妇幼保健, 2022, 37(6): 1121-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZFYB202206044.htm
ZHOU D Y, LU Y J, CAI Q. Analysis of factors affecting tooth loss due to osteoporosis in menopausal women[J]. China Maternal and Child Health, 2022, 37(6): 1121-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZFYB202206044.htm
|
[40] |
HERNÁNDEZ-VIGUERAS S, MARTÍNEZ-GARRIGA B, SÁNCHEZ M C, et al. Oral microbiota, periodontal status, and osteoporosis in postmenopausal females[J]. J Periodontol, 2016, 87(2): 124-133. doi: 10.1902/jop.2015.150365
|
[41] |
BRENNAN-CALANAN R M, GENCO R J, WILDING G E, et al. Osteoporosis and oral infection: independent risk factors for oral bone loss[J]. J Dent Res, 2008, 87(4): 323-327. doi: 10.1177/154405910808700403
|
[42] |
FREIRE M, NELSON K E, EDLUND A. The oral host-microbial interactome: an ecological chronometer of health?[J]. Trends Microbiol, 2021, 29(6): 551-561. doi: 10.1016/j.tim.2020.11.004
|
[43] |
孙鹏飞, 张佳铭, 周铖, 等. 骨质疏松与口腔环境的相关性研究[J]. 医学信息, 2021, 34(9): 45-47, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXX202109012.htm
SUN P F, ZHANG J M, ZHOU C, et al. Correlation study between osteoporosis and oral environment[J]. Medical Information, 2021, 34(9): 45-47, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXX202109012.htm
|
[44] |
DUTZAN N, KAJIKAWA T, ABUSLEME L, et al. A dysbiotic microbiome triggers TH17 cells to mediate oral mucosal immunopathology in mice and humans[J]. Sci Transl Med, 2018, 10(463): eaat0797. DOI: 10.1126/scitranslmed.aat0797.
|
[45] |
CERRATO A, ZANETTE G, BOCCUTO M, et al. Actinomyces and MRONJ: a retrospective study and a literature review[J]. J Stomatol Oral Maxillofac Surg, 2021, 122(5): 499-504. doi: 10.1016/j.jormas.2020.07.012
|
[46] |
CHIPASHVILI O, UTTER D R, BEDREE J K, et al. Episymbiotic Saccharibacteria suppresses gingival inflammation and bone loss in mice through host bacterial modulation[J]. Cell Host Microbe, 2021, 29(11): 1649-1662. doi: 10.1016/j.chom.2021.09.009
|
[47] |
马成, 谢兴文, 李宁, 等. 特异性促炎症消退介质在骨病治疗中的研究进展[J]. 中国骨质疏松杂志, 2023, 29(9): 1379-1385. doi: 10.3969/j.issn.1006-7108.2023.09.022
MA C, XIE X W, LI N, et al. Progress of specific pro-inflammatory and abrogative mediators in the treatment of bone diseases[J]. Chinese Journal of Osteoporosis, 2023, 29(9): 1379-1385. doi: 10.3969/j.issn.1006-7108.2023.09.022
|
[48] |
赖静, 余昕, 郭姗姗. 牙周炎和骨质疏松症相关性研究现状的探讨[J]. 现代医学与健康研究电子杂志, 2023, 7(15): 131-134. https://www.cnki.com.cn/Article/CJFDTOTAL-XYJD202315042.htm
LAI J, YU X, GUO S S. Current status of research on the correlation between periodontitis and osteoporosis[J]. Electronic Journal of Modern Medicine and Health Research, 2023, 7(15): 131-134. https://www.cnki.com.cn/Article/CJFDTOTAL-XYJD202315042.htm
|
[49] |
欧阳嵘, 崔世维, 朱轶晴, 等. 2型糖尿病炎症因子水平与骨质疏松症的关系[J]. 中华全科医学, 2013, 11(5): 690-691. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201305017.htm
OUYANG R, CUI S W, ZHU Y Q, et al. Relationship between inflammatory factor levels and osteoporosis in type 2 diabetes mellitus[J]. Chinese Journal of General Practice, 2013, 11(5): 690-691. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201305017.htm
|
[50] |
徐克, 樊金婷, 周晓辉. 原发性骨质疏松相关基因研究进展[J]. 临床医药文献电子杂志, 2018, 5(74): 197-198. doi: 10.3877/j.issn.2095-8242.2018.74.117
XU K, FAN J T, ZHOU X H. Progress in primary osteoporosis-related gene research[J]. Electronic Journal of Clinical Medicine Literature, 2018, 5(74): 197-198. doi: 10.3877/j.issn.2095-8242.2018.74.117
|