Volume 22 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
ZHANG Qiao, ZHOU Xuezhi, CHEN Binghe, HOU Dong, WU Xinjun, ZHU Shaohui. A two-sample Mendelian randomization study of type 2 diabetes mellitus and colorectal cancer risk[J]. Chinese Journal of General Practice, 2024, 22(9): 1471-1474. doi: 10.16766/j.cnki.issn.1674-4152.003661
Citation: ZHANG Qiao, ZHOU Xuezhi, CHEN Binghe, HOU Dong, WU Xinjun, ZHU Shaohui. A two-sample Mendelian randomization study of type 2 diabetes mellitus and colorectal cancer risk[J]. Chinese Journal of General Practice, 2024, 22(9): 1471-1474. doi: 10.16766/j.cnki.issn.1674-4152.003661

A two-sample Mendelian randomization study of type 2 diabetes mellitus and colorectal cancer risk

doi: 10.16766/j.cnki.issn.1674-4152.003661
Funds:

 LHGJ20210536

 22B320007

  • Received Date: 2024-03-26
  •   Objective  This study aims to explore the potential causal relationship between type 2 diabetes mellitus (T2DM) and colorectal cancer (CRC) using a two-sample Mendelian randomization (MR) method.  Methods  Summary data were obtained from genome-wide association studies (GWAS) datasets, including 490 089 cases for the exposure (T2DM) and 383 348 cases for the outcome (CRC). To minimize linkage disequilibrium and confounding factors, and to ensure strong association, 47 single nucleotide polymorphisms (SNPs) were selected as instrumental variables (IVs) for the study. The inverse variance weighted (IVW) method was used as the primary analysis, with supplementary analysis by the weighted median method, MR-Egger method, simple mode method, and weighted mode method to assess the causal relationship. Sensitivity analysis was conducted using the leave-one-out method, and visual tools were employed to further evaluate the reliability and robustness of the MR results. Heterogeneity was assessed using Cochran ' s Q test for both the IVW method and MR-Egger method, while pleiotropy was evaluated using the MR-Egger intercept method.  Results  The IVW method indicated no significant causal relationship between T2DM and CRC (OR=1.000, 95% CI: 0.999-1.001, P=0.790). These results were consistent across the weighted median method (P=0.386), MR-Egger method (P=0.137), simple mode method (P=0.275), and weighted mode method (P=0.479). The leave-one-out analysis did not identify any individual SNPs that significantly influenced the overall results. Both heterogeneity tests (P>0.05) and pleiotropy tests (P>0.05) supported the reliability and robustness of the MR conclusions.  Conclusion  There is no evident genetic causal relationship between T2DM and colorectal cancer.

     

  • loading
  • [1]
    SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
    [2]
    FENG R M, SU Q L, HUANG X Y, et al. Cancer situation in China: what does the China cancer map indicate from the first national death survey to the latest cancer registration?[J]. Cancer Commun, 2023, 43(1): 75-86. doi: 10.1002/cac2.12393
    [3]
    PIGEYRE M, GERSTEIN H, AHLQVIST E, et al. Identifying blood biomarkers for type 2 diabetes subtyping: a report from the origin trial[J]. Diabetologia, 2023, 66(6): 1045-1051. doi: 10.1007/s00125-023-05887-7
    [4]
    刘瑜婷, 石敏, 陈燕娜, 等. 血清C1q/肿瘤坏死因子相关蛋白9水平与妊娠期糖尿病及其胰岛素抵抗的关系[J]. 中华全科医学, 2024, 22(2): 195-197, 229. doi: 10.16766/j.cnki.issn.1674-4152.003363

    LIU Y T, SHI M, CHEN Y N, et al. Serum levels of C1q/TNF-related protein 9 and its association with insulin resistance in gestational diabetes mellitus[J]. Chinese Journal of General Practice, 2024, 22(2): 195-197, 229. doi: 10.16766/j.cnki.issn.1674-4152.003363
    [5]
    LIU X Q, LI D C, GAO W X, et al. Identification of the shared gene signature and biological mechanism between type 2 diabetes and colorectal cancer[J]. Front Genet, 2023;14: 1202849. DOI: 10.3389/fgene.2023.1202849.
    [6]
    LI P S, WANG H Y, GUO L, et al. Association between gut microbiota and preeclampsia-eclampsia: a two-sample Mendelian randomization study[J]. BMC Med, 2022, 20(1): 443. DOI: 10.1186/s12916-022-02657-x.
    [7]
    BIRNEY E. Mendelian randomization[J]. Cold Spring Harb Perspect Med, 2022, 12(4): a041302. DOI: 10.1101/cshperspect.a041302.
    [8]
    MUKAMAL K J, STAMPFER M J, RIMM E B. Genetic instrumental variable analysis: time to call mendelian randomization what it is. The example of alcohol and cardiovascular disease[J]. Eur J Epidemiol, 2020, 35(2): 93-97. doi: 10.1007/s10654-019-00578-3
    [9]
    XUE H R, WU C, PAN W. Leveraging existing GWAS summary data of genetically correlated and uncorrelated traits to improve power for a new GWAS[J]. Genet Epidemiol, 2020, 44(7): 717-732. doi: 10.1002/gepi.22333
    [10]
    CARTER A R, SANDERSON E, HAMMERTON G, et al. Mendelian randomisation for mediation analysis: current methods and challenges for implementation[J]. Eur J Epidemiol, 2021, 36(5): 465-478. doi: 10.1007/s10654-021-00757-1
    [11]
    CHEN X, KONG J Q, DIAO X Y, et al. Depression and prostate cancer risk: a Mendelian randomization study[J]. Cancer Med, 2020, 9(23): 9160-9167. doi: 10.1002/cam4.3493
    [12]
    YANG Y, XIAN W, WU D D, et al. The role of obesity, type 2 diabetes, and metabolic factors in gout: a Mendelian randomization study[J]. Front Endocrinol (Lausanne), 2022, 13: 917056. DOI: 10.3389/fendo.2022.917056.
    [13]
    陈继鑫, 周沁心, 郭天赐, 等. 白细胞介素-1受体拮抗剂与骨关节炎及亚型的孟德尔随机化研究[J]. 医学研究杂志, 2024, 53(4): 46-51.

    CHEN J X, ZHOU Q X, GUO T C, et al. Mendelian Randomization Study of Interleukin-1 Receptor Antagonists and Osteoarthritis and Subtypes[J]. Journal of Medical Research, 2024, 53(4): 46-51.
    [14]
    LUO G, YAO Y Y, TAO J C, et al. Causal association of sleep disturbances and low back pain: a bidirectional two-sample Mendelian randomization study[J]. Front Neurosci, 2022, 16: 1074605. DOI: 10.3389/fnins.2022.1074605.
    [15]
    LIN Z T, PAN I, PAN W. A practical problem with Egger regression in Mendelian randomization[J]. PLoS Genet, 2022, 18(5): e1010166. DOI: 10.1371/journal.pgen.1010166.
    [16]
    XU J W, ZHANG S Y, TIAN Y, et al. Genetic causal association between iron status and osteoarthritis: a two-sample Mendelian randomization[J]. Nutrients, 2022, 14(18): 3683-3696. doi: 10.3390/nu14183683
    [17]
    GOTO A, YAMAJI T, SAWADA N, et al. Diabetes and cancer risk: a Mendelian randomization study[J]. Int J Cancer, 2020, 146(3): 712-719. doi: 10.1002/ijc.32310
    [18]
    YUAN S, KAR S, CARTER P, et al. Is Type 2 diabetes causally associated with cancer risk? Evidence from a two-sample Mendelian randomization study[J]. Diabetes, 2020, 69(7): 1588-1596. doi: 10.2337/db20-0084
    [19]
    MURPHY N, SONG M Y, PAPADIMITRIOU N, et al. Associations between glycemic traits and colorectal cancer: a Mendelian randomization analysis[J]. J Natl Cancer Inst, 2022, 114(5): 740-752. doi: 10.1093/jnci/djac011
    [20]
    MAO X H, TAN J T, MAK L Y, et al. Optimal glycaemic control and the reduced risk of colorectal adenoma and cancer in patients with diabetes: a population-based cohort study[J]. Gut, 2024. DOI: 10.1136/gutjnl-2023-331701.
    [21]
    MAGHLAPERIDZE Z, KAPETIVADZE V, TABUKASHVILI R, et al. The role of insulin-like growth factor-1 and insulin in development of colorectal cancer[J]. Georgian Med News, 2021(315): 26-29.
    [22]
    CHEN H D, LIU L, LU M, et al. Implications of lifestyle factors and polygenic risk score for absolute risk prediction of colorectal neoplasm and risk-adapted screening[J]. Front Mol Biosci, 2021, 8: 685410. DOI: 10.3389/fmolb.2021.685410.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (26) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return