Volume 22 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
WANG Liying, CHEN Jing. Metabolite level of intestinal flora in patients with major depression and its correlation with inflammatory factors[J]. Chinese Journal of General Practice, 2024, 22(9): 1563-1566. doi: 10.16766/j.cnki.issn.1674-4152.003683
Citation: WANG Liying, CHEN Jing. Metabolite level of intestinal flora in patients with major depression and its correlation with inflammatory factors[J]. Chinese Journal of General Practice, 2024, 22(9): 1563-1566. doi: 10.16766/j.cnki.issn.1674-4152.003683

Metabolite level of intestinal flora in patients with major depression and its correlation with inflammatory factors

doi: 10.16766/j.cnki.issn.1674-4152.003683
Funds:

 2023KY1272

  • Received Date: 2024-01-03
  •   Objective  To analyze the characteristics of intestinal flora and the level of its metabolites in patients with major depressive disorder (MDD), and to explore its relationship with inflammatory factors.  Methods  A total of 98 MDD patients who were treated in Shaoxing Seventh People ' s Hospital from May 2020 to May 2023 were selected as the research object and 50 healthy people who received health examination in the same period were selected as the control group. The levels of intestinal flora metabolites and inflammatory factors between MDD patients and healthy people were compared, and the relationship between intestinal flora metabolites and inflammatory factors was analyzed by Pearson correlation.  Results  The levels of IL-1β[(55.48±12.08) ng/L] and other inflammatory factors in the MDD group were higher than those in the control group [(42.15±10.03) ng/L, t=7.124, P < 0.001]. The trimetlylamine oxide (TMAO) level in the MDD group [(3.25±0.71) μmol/L] was higher than that in the control group [(1.37±0.24) μmol/L, t=23.694, P < 0.001]. The total amount of short chain fatty acids (SCFAs) in the MDD group [(18.26±2.94) μg/g] was lower than that in the control group [(22.03±3.25) μg/g, t=6.889, P < 0.001]. In the MDD group, the TMAO level was positively correlated with the level of IL-1β (r=0.404), IL-6 (r=0.503), and CRP (r=0.454), and negatively correlated with TNF-αlevel (r=-0.348). The levels of SCFAs and IL-1β (r=-0.478), IL-6 (r=-0.378), and CRP (r=-0.416) were negatively correlated (P < 0.05).  Conclusion  The levels of TMAO and SCFAs in the intestinal flora of MDD patients are closely related to the levels of inflammatory factors, and restoring the balance of intestinal flora metabolites plays an important role in the treatment of MDD.

     

  • loading
  • [1]
    韩振翔, 祁丽丽, 侯臻臻, 等. 醒神解郁方对卒中后中重度抑郁患者血清Th17/Treg免疫失衡及生活能力干预研究[J]. 中华全科医学, 2021, 19(2): 217-220. doi: 10.16766/j.cnki.issn.1674-4152.001771

    HAN Z X, QI L L, HOU Z Z, et al. Clinical effect of Xinshen Jieyu Decoction in the imbalance of Th17/Treg and Barthel index in the moderate or severe post-stroke depression patients[J]. Chinese Journal of General Practice, 2021, 19(2): 217-220. doi: 10.16766/j.cnki.issn.1674-4152.001771
    [2]
    KANG S G, CHO S E. Neuroimaging biomarkers for predicting treatment response and recurrence of major depressive disorder[J]. Int J Mol Sci, 2020, 21(6): 2148. doi: 10.3390/ijms21062148
    [3]
    唐恒, 马开利, 晏远智. 不同剂量沃替西汀治疗重度抑郁症的系统评价[J]. 中国医院药学杂志, 2020, 40(3): 315-321.

    TANG H, MA K L, YAN Y Z. Systematicevaluation of different doses of vortioxetine in the treatment of major depressive disorder[J]. Chinese Journal of Hospital Pharmacy, 2020, 40(3): 315-321.
    [4]
    TROUBAT R, BARONE P, LEMAN S, et al. Neuroinflammation and depression: a review[J]. Eur J Neurosci, 2021, 53(1): 151-171. doi: 10.1111/ejn.14720
    [5]
    TING E Y, YANG A C, TSAI S J. Role of interleukin-6 in depressive disorder[J]. Int J Mol Sci, 2020, 21(6): 2194. DOI: 10.3390/ijms21062194.
    [6]
    VALLES-COLOMER M, FALONY G, DARZI Y, et al. The neuroactive potential of the human gut microbiota in quality of life and depression[J]. Nat Microbiol, 2019, 4(4): 623-632. doi: 10.1038/s41564-018-0337-x
    [7]
    LO B C, CHEN G Y, NÙÑEZ G, et al. Gut microbiota and systemic immunity in health and disease[J]. Int Immunol, 2021, 33(4): 197-209. doi: 10.1093/intimm/dxaa079
    [8]
    ZHUANG Z, YANG R, WANG W, et al. Associations between gut microbiota and Alzheimer ' s disease, major depressive disorder, and schizophrenia[J]. J Neuroinflammation, 2020, 17(1): 288. doi: 10.1186/s12974-020-01961-8
    [9]
    KARAKULA-JUCHNOWICZ H, ROG J, JUCHNOWICZ D, et al. The study evaluating the effect of probiotic supplementation on the mental status, inflammation, and intestinal barrier in major depressive disorder patients using gluten-free or gluten-containing diet (SANGUT study): a 12-week, randomized, double-blind, and placebo-controlled clinical study protocol[J]. Nutr J, 2019, 18(1): 50. doi: 10.1186/s12937-019-0475-x
    [10]
    CAI J, SUN L, GONZALEZ F J. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis[J]. Cell Host Microbe, 2022, 30(3): 289-300. doi: 10.1016/j.chom.2022.02.004
    [11]
    TILG H, ADOLPH T E, TRAUNER M. Gut-liver axis: pathophysiological concepts and clinical implications[J]. Cell Metab, 2022, 34(11): 1700-1718. doi: 10.1016/j.cmet.2022.09.017
    [12]
    UHER R, PAYNE J L, PAVLOVA B, et al. Major depressive disorder in DSM-5: implications for clinical practice and research of changes from DSM-IV[J]. Depress Anxiety, 2014, 31(6): 459-471. doi: 10.1002/da.22217
    [13]
    中国中西医结合学会神经科专业委员会. 抑郁症中西医结合诊疗专家共识[J]. 中国中西医结合杂志, 2020, 40(2): 141-148.
    [14]
    HAMILTON M. A rating scale for depression[J]. J Neurol Neurosurg Psychiatry, 1960, 23(1): 56-62. doi: 10.1136/jnnp.23.1.56
    [15]
    DOWLING L R, STRAZZARI M R, KEELY S, et al. Enteric nervous system and intestinal epithelial regulation of the gut-brain axis[J]. J Allergy Clin Immunol, 2022, 150(3): 513-522. doi: 10.1016/j.jaci.2022.07.015
    [16]
    SOCAŁA K, DOBOSZEWSKA U, SZOPA A, et al. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders[J]. Pharmacol Res, 2021, 172: 105840. DOI: 10.1016/j.phrs.2021.105840.
    [17]
    CASPANI G, SWANN J. Small talk: microbial metabolites involved in the signaling from microbiota to brain[J]. Curr Opin Pharmacol, 2019, 48: 99-106. doi: 10.1016/j.coph.2019.08.001
    [18]
    SILVA Y P, BERNARDI A, FROZZA R L. The role of short-chain fatty acids from gut microbiota in gut-brain communication[J]. Front Endocrinol (Lausanne), 2020, 11: 25. doi: 10.3389/fendo.2020.00025
    [19]
    JU S, SHIN Y, HAN S, et al. The gut-brain axis in schizophrenia: the implications of the gut microbiome and SCFA production[J]. Nutrients, 2023, 15(20): 4391. doi: 10.3390/nu15204391
    [20]
    KNUDSEN J K, BUNDGAARD-NIELSEN C, HJERRILD S, et al. Gut microbiota variations in patients diagnosed with major depressive disorder: a systematic review[J]. Brain Behav, 2021, 11(7): e02177. DOI: 10.1002/brb3.2177.
    [21]
    RONG H, XIE X H, ZHAO J, et al. Similarly in depression, nuances of gut microbiota: evidences from a shotgun metagenomics sequencing study on major depressive disorder versus bipolar disorder with current major depressive episode patients[J]. J Psychiatr Res, 2019, 113: 90-99. doi: 10.1016/j.jpsychires.2019.03.017
    [22]
    LAI W T, ZHAO J, XU S X, et al. Shotgun metagenomics reveals both taxonomic and tryptophan pathway differences of gut microbiota in bipolar disorder with current major depressive episode patients[J]. J Affect Disord, 2021, 278: 311-319. doi: 10.1016/j.jad.2020.09.010
    [23]
    吴振宁, 王琦, 秦雪梅, 等. 肠道菌群及其代谢产物在中药治疗抑郁症中的研究进展[J]. 中草药, 2023, 54(14): 4713-4721.

    WU Z N, WANG Q, QIN X M, et al. Research progress on gut microbiota and its metabolites in treating depression with traditional Chinese medicine[J]. Chinese Traditional and Herbal Drugs, 2023, 54(14): 4713-4721.
    [24]
    PEIRCE J M, ALVIÑA K. The role of inflammation and the gut microbiome in depression and anxiety[J]. J Neurosci Res, 2019, 97(10): 1223-1241. doi: 10.1002/jnr.24476
    [25]
    BEUREL E, TOUPS M, NEMEROFF C B. The bidirectional relationship of depression and inflammation: double trouble[J]. Neuron, 2020, 107(2): 234-256. doi: 10.1016/j.neuron.2020.06.002
    [26]
    WEI H, YU C, ZHANG C, et al. Butyrate ameliorates chronic alcoholic central nervous damage by suppressing microglia-mediated neuroinflammation and modulating the microbiome-gut-brain axis[J]. Biomed Pharmacother, 2023, 160: 114308. DOI: 10.1016/j.biopha.2023.114308.
    [27]
    MEINITZER S, BARANYI A, HOLASEK S, et al. Sex-specific associations of trimethylamine-N-oxide and zonulin with signs of depression in carbohydrate malabsorbers and nonmalabsorbers[J]. Dis Markers, 2020, 2020: 7897240. DOI: 10.1155/2020/7897240.
    [28]
    MUDIMELA S, VISHWANATH N K, PILLAI A, et al. Clinical significance and potential role of trimethylamine N-oxide in neurological and neuropsychiatric disorders[J]. Drug Discov Today, 2022, 27(11): 103334. DOI: 10.1016/j.drudis.2022.08.002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(5)

    Article Metrics

    Article views (19) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return