Citation: | MAO Guo-feng, ZHOU Jie, LYU Li. Analysis of virulence and drug resistance of pan drug resistant Klebsiella pneumoniae[J]. Chinese Journal of General Practice, 2022, 20(1): 152-156. doi: 10.16766/j.cnki.issn.1674-4152.002300 |
[1] |
KOHLER P P, VOLLING C, GREEN K, et al. Carbapenem resistance, initial antibiotic therapy, and mortality in Klebsiella pneumoniae bacteremia: A systematic review and meta-analysis[J]. Infect Control Hosp Epidemiol, 2017, 38(11): 1319-1328. doi: 10.1017/ice.2017.197
|
[2] |
DAIKOS G L, MARKOGIANNAKIS A, SOULI M, et al. Bloodstream infections caused by carbapenemase-producing Klebsiella pneumoniae: A clinical perspective[J]. Expert Rev Anti Infect Ther, 2012, 10(12): 1393-1404. doi: 10.1586/eri.12.138
|
[3] |
WYRES K L, HOLT K E. Klebsiella pneumoniae population genomics and antimicrobial-resistant clones[J]. Trends Microbiol, 2016, 24(12): 944-956. doi: 10.1016/j.tim.2016.09.007
|
[4] |
XU L, SUN X, MA X. Systematic review and meta-analysis of mor-tality of patients infected with carbapenem-resistant Klebsiella pneumoniae[J]. Ann Clin Microbiol Antimicrob, 2017, 16(1): 18. doi: 10.1186/s12941-017-0191-3
|
[5] |
DULYAYANGKUL P, WAN NUR ISMAH W A K, DOUGLAS E J A, et al. Mutation of kvrA causes OmpK35/36 porin downregulation and reduced meropenem/vaborbactam susceptibility in KPC-producing Klebsiella pneumoniae[J]. Antimicrob Agents Chemother, 2020. DOI: 10.1128/AAC.02208-19.
|
[6] |
EUCAST. Breakpoint tables for interpretation of MICs and zone diameters[S]. Version2.0.2015. http://www.eucast.org/clinicalbreak-points/.
|
[7] |
国家卫生计生委合理用药专家委员会, 全国细菌耐药监测网. 2018年全国细菌耐药监测报告[J]. 中国合理用药探索, 2020, 17(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYS202001001.htm
|
[8] |
梁美春, 王瑶琴, 张小姣. 同一医院不同ICU病区患者痰中细菌学的分布与耐药性比较[J]. 疾病监测, 2018, 33(4): 333-338. https://www.cnki.com.cn/Article/CJFDTOTAL-JBJC201804022.htm
|
[9] |
FORDE B M, O'TOOLE P W. Next-generation sequencing technologies and their impact on microbial genomics[J]. Brief Funct Genomics, 2013, 12(5): 440-453. doi: 10.1093/bfgp/els062
|
[10] |
丁月平, 陆军, 李曦, 等. 基于全基因组测序对碳青霉烯类耐药肺炎克雷伯菌的耐药基因分析[J]. 中华临床感染病杂志, 2019, 12(2): 122-126. doi: 10.3760/cma.j.issn.1674-2397.2019.02.008
|
[11] |
STOESSER N, BATTY E M, EYRE D W, et al. Predicting antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data[J]. J Antimicrob Chemother, 2013, 68(10): 2234-2244. doi: 10.1093/jac/dkt180
|
[12] |
翟俊斌, 贾佳, 程莉, 等. 产KPC-2肺炎克雷伯菌的MLST和wzi分型分析[J]. 临床检验杂志, 2018, 36(9): 660-662, 666. https://www.cnki.com.cn/Article/CJFDTOTAL-LCJY201809005.htm
|
[13] |
高倩倩, 殷杏, 祝俊英, 等. 碳青霉烯类耐药肺炎克雷伯菌的分子特征[J]. 中国感染与化疗杂志, 2018, 18(1): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-KGHL201801016.htm
|
[14] |
黄丹艳, 史秋橙, 蓝鹏, 等. 浙江地区碳青霉烯类耐药肺炎克雷伯菌分布、流行及耐药基因分析[J]. 中华传染病杂志, 2018, 36(1): 7-11. doi: 10.3760/cma.j.issn.1000-6680.2018.01.004
|
[15] |
ZHOU H, GUO W, ZHANG J, et al. Draft genome sequence of a metallo-β-lactamase (blaAIM-1)-producing Klebsiella pneumoniae ST1916 isolated from a patient with chronic diarrhoea[J]. J Glob Antimicrob Resist, 2019, 16: 165-167. doi: 10.1016/j.jgar.2019.01.010
|
[16] |
朱水荣, 商小春, 帅慧群, 等. 浙江省首次检出1株携带NDM_1基因的肺炎克雷伯菌[J]. 中国人兽共患病学报, 2015, 31(1): 30-34. doi: 10.3969/cjz.j.issn.1002-2694.2015.01.007
|
[17] |
LOW Y M, YAP P S, ABDUL JABAR K, et al. The emergence of carbapenem resistant Klebsiella pneumoniae in Malaysia: Correlation between microbiological trends with host characteristics and clinical factors[J]. Antimicrob Resist Infect Control, 2017, 6: 5. doi: 10.1186/s13756-016-0164-x
|
[18] |
ASSIMAKOPOULOS S F, LAZARIS V, PAPADIMITRIOU-OLIVGERIS M, et al. Predictors of mortality for KPC-producing Klebsiella pneumoniae bloodstream infections in adult neutropenic patients with haematological malignancies[J]. Infect Dis(Lond), 2020, 52(6): 446-449. doi: 10.1080/23744235.2020.1741676
|
[19] |
ALGHORIBI M F, BINKHAMIS K, ALSWAJI A A, et al. Genomic analysis of the first KPC-producing Klebsiella pneumoniae isolated from a patient in Riyadh: A new public health concern in Saudi Arabia[J]. J Infect Public Health, 2020, 13(4): 647-650.
|
[20] |
CAI R, WU M, ZHANG H, et al. A smooth-type, phage-resistant Klebsiella pneumoniae mutant strain reveals that OmpC is indispensable for infection by phage GH-K3[J]. Appl Environ Microbiol, 2018, 84(21): e01585-18.
|
[21] |
STOREY D, MCNALLY A, ÅSTRAND M, et al. Klebsiella pneumoniae type Ⅵ secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent[J]. PLoS Pathog, 2020, 16(3): e1007969.
|