Volume 20 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
ZHOU Ya-di, JIN Fa-xiang. Identification of nontuberculous mycobacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and analysis of drug-sensitivity test[J]. Chinese Journal of General Practice, 2022, 20(9): 1548-1550. doi: 10.16766/j.cnki.issn.1674-4152.002646
Citation: ZHOU Ya-di, JIN Fa-xiang. Identification of nontuberculous mycobacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and analysis of drug-sensitivity test[J]. Chinese Journal of General Practice, 2022, 20(9): 1548-1550. doi: 10.16766/j.cnki.issn.1674-4152.002646

Identification of nontuberculous mycobacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and analysis of drug-sensitivity test

doi: 10.16766/j.cnki.issn.1674-4152.002646
Funds:

 2020KY334

  • Received Date: 2022-03-04
    Available Online: 2022-11-29
  •   Objective  To study the typing results of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) of nontuberculous mycobacteria (NTM), compare the drug resistance of different NTM strains, and provide a basis for clinical rational drug use.  Methods  The data on NTM strains in Shaoxing City Tuberculosis Designated Hospital (Affiliated Hospital of Shaoxing College of Arts and Sciences) from March 2019 to June 2021 were retrospectively analyzed. After excluding the strain data from the same patient, the remaining 128 NTM strains were classified by MALDI-TOF MS technology. Genotyping was performed at the same time, and the results of genotyping were used as the gold standard. The accuracy of MALDI-TOF MS typing results was calculated, and drug susceptibility tests were performed on the top three NTMs after typing.  Results  The accuracy of NTM typing by MALDI-TOF MS was 98.4%. The sensitivity rates of mycobacterium intracellular to amikacin (AK), clarithromycin (CLA), linezolid (LZD), moxifloxacin (MXF) and rifampicin (RFP) were 98.5%, 89.4%, 86.4%, 83.3% and 62.1%, respectively. The sensitivity rates of mycobacterium avium to AK, CLA, LZD, MXF and RFP were 100.0%, 92.9%, 100.0%, 82.1% and 89.3%, respectively. The drug resistance rates of the above strains to minocycline (MH) were 90.9% and 82.1%, respectively. The sensitivity rates of mycobacterium Kansas to AK, CLA and RFP were 100.0%, 100.0% and 95.2%, respectively.  Conclusion  MALDI-TOF MS has high accuracy in NTM typing, and mycobacterium intracellular, Mycobacterium avium and Mycobacterium Kansas are highly sensitive to AK and CLA. AK and CLA can be used as the first choice for clinical treatment of NTM.

     

  • loading
  • [1]
    LOPEMAN R C, HARRISON J, DESAI M, et al. Mycobacterium abscessus: Environmental bacterium turned clinical nightmare[J]. Microorganisms, 2019, 7(3): 90. doi: 10.3390/microorganisms7030090
    [2]
    DALEY C L, IACCARINO J M, LANGE C, et al. Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline[J]. Clin Infect Dis, 2020, 71(4): 905-913. doi: 10.1093/cid/ciaa1125
    [3]
    ZHANG Z X, CHERNG B P Z, SNG L H, et al. Clinical and microbiological characteristics of non-tuberculous mycobacteria diseases in Singapore with a focus on pulmonary disease, 2012-2016[J]. BMC Infect Dis, 2019, 19(1): 436. doi: 10.1186/s12879-019-3909-3
    [4]
    TSUCHIDA S, UMEMURA H, NAKAYAMA T. Current status of matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) in clinical diagnostic microbiology[J]. Molecules, 2020, 25(20): 4775. doi: 10.3390/molecules25204775
    [5]
    WELKER M, VAN BELKUM A, GIRARD V, et al. An update on the routine application of MALDI-TOF MS in clinical microbiology[J]. Expert Rev Proteomics, 2019, 16(8): 695-710. doi: 10.1080/14789450.2019.1645603
    [6]
    丁毅伟, 李艳君, 钱扬会, 等. 血清分离胶促凝管法和HB&L微生物培养体系预处理在MALDI-TOF MS快速鉴定血培养阳性样本病原菌的方法研究[J]. 中华检验医学杂志, 2021, 44(4): 341-346. doi: 10.3760/cma.j.cn114452-20200928-00752

    DING Y W, LI Y J, QIAN Y H, et al. Comparison of separating gel and HB&L pretreatment methods for rapid identification of the pathogenic bacteria in positive blood culture samples by MALDI-TOF MS[J]. Chinese Journal of Laboratory Medicine, 2021, 44(4): 341-346. doi: 10.3760/cma.j.cn114452-20200928-00752
    [7]
    WOODS G L, BROWN-ELLIOTT B A, CONVILLE P S, et al. Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes[S]. 2nd ed. Wayne (PA): Clinical and Laboratory Standards Institute, 2011.
    [8]
    SCHIFF H F, JONES S, ACHAIAH A, et al. Clinical relevance of non-tuberculous mycobacteria isolated from respiratory specimens: Seven year experience in a UK hospital[J]. Sci Rep, 2019, 9(1): 1730. doi: 10.1038/s41598-018-37350-8
    [9]
    CHIN K L, SARMIENTO M E, ALVAREZ-CABRERA N, et al. Pulmonary non-tuberculous mycobacterial infections: Current state and future management[J]. Eur J Clin Microbiol Infect Dis, 2020, 39(5): 799-826. doi: 10.1007/s10096-019-03771-0
    [10]
    HOLLAND R D, WILKES J G, RAFⅡ F, et al. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry[J]. Rapid Commun Mass Spectrom, 1996, 10(10): 1227-1232. doi: 10.1002/(SICI)1097-0231(19960731)10:10<1227::AID-RCM659>3.0.CO;2-6
    [11]
    LUO Y P, SIU G K H, YEUNG A S F, et al. Performance of the VITEK MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for rapid bacterial identification in two diagnostic centres in China[J]. J Med Microbiol, 2015, 64(Pt 1): 18-24.
    [12]
    洪燕, 郭海萍, 陈金连, 等. 某院恶性肿瘤患者多重耐药菌感染监测及危险因素分析[J]. 中华全科医学, 2020, 18(2): 314-317. doi: 10.16766/j.cnki.issn.1674-4152.001234

    HONG Y, GUO H P, CHEN J L, et al. Surveillance of multi-drug-resistant bacterial infections in patients with malignant tumors in a hospital and analysis of risk factors[J]. Chinese Journal of General Practice, 2020, 18(2): 314-317. doi: 10.16766/j.cnki.issn.1674-4152.001234
    [13]
    孟秀娟, 吴安华. 如何应对多重耐药菌医院感染的严峻挑战[J]. 中国感染控制杂志, 2019, 18(3): 185-192. https://www.cnki.com.cn/Article/CJFDTOTAL-GRKZ201903001.htm

    MENG X J, WU A H. How to deal with severe challenge of healthcare-associated infection due to multidrug-resistant organisms[J]. Chinese Journal of Infection Control, 2019, 18(3): 185-192. https://www.cnki.com.cn/Article/CJFDTOTAL-GRKZ201903001.htm
    [14]
    张海平, 黄锡通, 郏鸿飞, 等. 某二甲医院血培养微生物检验的病原菌株与分布情况[J]. 中华全科医学, 2020, 18(10): 1722-1724, 1734. doi: 10.16766/j.cnki.issn.1674-4152.001603

    ZHANG H P, HUANG X T, JIA H F, et al. Analysis of pathogenic strains and distribution of blood culture microorganism in a second grade hospital[J]. Chinese Journal of General Practice, 2020, 18(10): 1722-1724, 1734. doi: 10.16766/j.cnki.issn.1674-4152.001603
    [15]
    中华医学会结核病学分会. 非结核分枝杆菌病诊断与治疗指南(2020年版)[J]. 中华结核和呼吸杂志, 2020, 43(11): 918-946. doi: 10.3760/cma.j.cn112147-20200508-00570

    Society of Tuberculosis, Chinese Medical Association. Guideline on diagnosis and treatment of non-tuberculous Mycobacteria diseases[J]. Chinese Journal of Tuberculosis and Respiratory Diseases, 2020, 43(11): 918-946. doi: 10.3760/cma.j.cn112147-20200508-00570
    [16]
    张汇征, 熊敏, 陈耀凯, 等. 重庆43例临床非结核分枝杆菌鉴定及药敏试验[J]. 中国预防医学杂志, 2019, 20(5): 375-378. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYC201905005.htm

    ZHANG H Z, XIONG M, CHEN Y K, et al. Species identification and drug-susceptibility of 43 clinically isolated nontuberculsis mycobacteria in Chongqing[J]. Chinese Preventive Medicine, 2019, 20(5): 375-378. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYC201905005.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(3)

    Article Metrics

    Article views (149) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return