Volume 21 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
SUN Xin-ran, ZHAO Hong, ZHAO Da-hai, QI Wen, WU Jiang-fen. The value of establishing a model in the differentiation of solid pulmonary nodules based on CT radiomics[J]. Chinese Journal of General Practice, 2023, 21(1): 15-18. doi: 10.16766/j.cnki.issn.1674-4152.002801
Citation: SUN Xin-ran, ZHAO Hong, ZHAO Da-hai, QI Wen, WU Jiang-fen. The value of establishing a model in the differentiation of solid pulmonary nodules based on CT radiomics[J]. Chinese Journal of General Practice, 2023, 21(1): 15-18. doi: 10.16766/j.cnki.issn.1674-4152.002801

The value of establishing a model in the differentiation of solid pulmonary nodules based on CT radiomics

doi: 10.16766/j.cnki.issn.1674-4152.002801
Funds:

 2021zhyx-c67

 2021037

 2020LCZD12

  • Received Date: 2022-11-30
    Available Online: 2023-04-07
  •   Objective  To explore the diagnostic efficacy of CT radiomics model for benign and malignant solid pulmonary nodules.  Methods  CT imaging data of 231 cases of solid pulmonary nodules confirmed by surgery, puncture or clinical diagnosis in our hospital from March 2019 to November 2022 were retrospectively analyzed, select 231 typical pulmonary nodules, and they were divided into benign group (98 cases) and malignant group (133 cases) according to pathological types. Infer Scholar software was used to outline the lesion contour from two and three dimensions respectively. The radiomics features were extracted by software, and the enrolled cases were divided into the training set and the test set in a ratio of 7∶ 3. Features were screened by Pearson correlation coefficient, significance test and LASSO regression analysis. Two dimensional and three dimensional radiomics feature models (model Ⅰ and model Ⅱ) were constructed respectively in the training set, and verified by test set. The area under receiver operating characteristic (ROC) curve (AUC) was used to evaluate the predictive efficiency of the model.  Results  Total 919 and 1 746 radiomics features were extracted from two dimensions and three dimensions respectively. After screening, 12 and 20 optimal radiomics features were obtained, which were used to construct radiomics model Ⅰ and Ⅱ by machine algorithms. The AUC value of model Ⅰ in the training set was 0.97. The AUC value of model Ⅱ in the training set was 0.98. The AUC value, sensitivity, specificity, positive predictive value, negative predictive value and accuracy of model Ⅰ in the test set were 0.94 (95% CI: 0.87-0.98), 83.9%, 89.5%, 86.7%, 87.2%, 87.0%, respectively. The AUC value, sensitivity, specificity, positive predictive value, negative predictive value and accuracy of model Ⅱ were 0.97 (95% CI: 0.94-0.99), 75.9%, 97.5%, 95.7%, 84.8%, 88.4%, respectively.  Conclusion  The model based on CT radiomics features can well predict the benign and malignant of solid pulmonary nodules. The diagnostic efficacy of model Ⅱ constructed from three-dimensional perspective is better than that of model Ⅰ constructed from two-dimensional perspective.

     

  • loading
  • [1]
    犹露, 李邦国. 影像组学在肺结节诊断的研究进展[J]. 中国CT和MRI杂志, 2022, 20(9): 182-184. https://www.cnki.com.cn/Article/CJFDTOTAL-CTMR202209045.htm

    YOU L, LI B G. Research progress of radiomics in the diagnosis of pulmonary nodules[J]. Chin J CT MRI, 2022, 20(9): 182-184. https://www.cnki.com.cn/Article/CJFDTOTAL-CTMR202209045.htm
    [2]
    郭莹, 高天慧, 赵孟阳, 等. 晚期非小细胞肺癌淋巴细胞亚群及细胞因子与免疫疗效的关系研究[J]. 中华全科医学, 2022, 20(9): 1462-1465. doi: 10.16766/j.cnki.issn.1674-4152.002623

    GUO Y, GAO T H, ZHAO M Y, et al. Study on the relationship between lymphocyte subsets, cytokines and immune efficacy in advanced non-small cell lung cancer[J]. Chin J Gen Practice, 2022, 20(9): 1462-1465. doi: 10.16766/j.cnki.issn.1674-4152.002623
    [3]
    余业洲, 赵红, 王龙胜, 等. 基于治疗前CT影像组学评估肺腺癌化疗疗效的研究[J]. 中华全科医学, 2020, 18(4): 623-626, 701. doi: 10.16766/j.cnki.issn.1674-4152.001314

    YU Y Z, ZHAO H, WANG L S, et al. The study of CT radiomics in assessing the efficacy of pulmonary adenocarcinoma chemotherapy before treatment[J]. Chin J Gen Practice, 2020, 18(4): 623-626, 701. doi: 10.16766/j.cnki.issn.1674-4152.001314
    [4]
    须民欣, 赵正凯, 杨丹丹, 等. 肺磨玻璃结节的HRCT定量数据与病理性质的相关性分析[J]. 重庆医学, 2021, 50(7): 1178-1181. https://www.cnki.com.cn/Article/CJFDTOTAL-CQYX202107022.htm

    XU M X, ZHAO Z K, YANG D D, et al. Analysis on correlation between HRCT quantitative data and pathologic properties of pulmonary ground glass nodules[J]. Chongqing Med, 2021, 50(7): 1178-1181. https://www.cnki.com.cn/Article/CJFDTOTAL-CQYX202107022.htm
    [5]
    徐青青, 单文莉, 朱艳, 等. 基于CT影像组学对孤立性肺结节性质分类的预测效能[J]. 南京医科大学学报(自然科学版), 2021, 41(4): 617-623. https://www.cnki.com.cn/Article/CJFDTOTAL-NJYK202104025.htm

    XU Q Q, SHAN W L, ZHU Y, et al. Predictive performance of the classification of solitary pulmonary nodule based on CT radiomics[J]. J Nanjing Med Univ(Nat Sci), 2021, 41(4): 617-623. https://www.cnki.com.cn/Article/CJFDTOTAL-NJYK202104025.htm
    [6]
    PÉREZ-MORALES J, LU H, MU W, et al. Volume doubling time and radiomic features predict tumor behavior of screen-detected lung cancers[J]. Cancer Biomark, 2022, 33(4): 489-501.
    [7]
    周艳, 叶磊, 潘婷婷, 等. 基于灰阶超声的不同影像组学模型鉴别乳腺肿块良恶性的价值[J]. 安徽医学, 2022, 43(2): 127-131. https://www.cnki.com.cn/Article/CJFDTOTAL-AHYX202202001.htm

    ZHOU Y, YE L, PAN T T, et al. The clinical value of different radiomics based on gray scale ultrasound imaging indifferentiating malignant from benign breast masses[J]. Anhui Med J, 2022, 43(2): 127-131. https://www.cnki.com.cn/Article/CJFDTOTAL-AHYX202202001.htm
    [8]
    王晓瑞, 苏晓华, 周全红, 等. CT影像组学鉴别良恶性孤立性肺结节的价值分析[J]. 北京医学, 2022, 44(9): 804-808. https://www.cnki.com.cn/Article/CJFDTOTAL-BJYX202209007.htm

    WANG X R, SU X H, ZHOU Q H, et al. Differential diagnostic value of CT radiomics in benign and malignant solitary pulmonary nodules[J]. Beijing Med, 2022, 44(9): 804-808. https://www.cnki.com.cn/Article/CJFDTOTAL-BJYX202209007.htm
    [9]
    LIU Q, HUANG Y, CHEN H, et al. The development and validation of a radiomic nomogram for the preoperative prediction of lung adenocarcinoma[J]. BMC Cancer, 2020, 20(1): 533.
    [10]
    范卫杰, 张冬. 影像组学及深度学习在肺结节良恶性鉴别诊断中的新理念[J]. 中华肺部疾病杂志(电子版), 2021, 14(5): 549-553. https://www.cnki.com.cn/Article/CJFDTOTAL-ZFBD202105001.htm

    FAN W J, ZHANG D. New concepts of imaging omics and deep learning in differential diagnosis of benign and malignant pulmonary nodules[J]. Chin J Lung Dis(Electronic Edition), 2021, 14(5): 549-553. https://www.cnki.com.cn/Article/CJFDTOTAL-ZFBD202105001.htm
    [11]
    林天武, 吴佩琪. CT影像组学在孤立性肺结节中的研究进展[J]. 中国医学创新, 2019, 16(21): 168-172. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYCX201921047.htm

    LIN T W, WU P Q. Advances of Radiomics Research Based on Computed Tomography in Solitary Pulmonary Nodules[J]. Med Innov Chin, 2019, 16(21): 168-172. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYCX201921047.htm
    [12]
    黄栎有, 徐璐, 温林春, 等. CT影像组学模型及深度学习技术预测肺腺癌EGFR突变[J]. 放射学实践, 2022, 37(8): 971-976. https://www.cnki.com.cn/Article/CJFDTOTAL-FSXS202208007.htm

    HUANG L Y, XU L, WEN L C, et al. Value of CT radiomics models and deep learning technique inpredicting EGFR mutation of lungadeno-carcinoma[J]. Radiol Practice, 2022, 37(8): 971-976. https://www.cnki.com.cn/Article/CJFDTOTAL-FSXS202208007.htm
    [13]
    LI H, MENDEL K R, LAN L, et al. Digital mammography in breast cancer: additive value of radiomics of breast parenchyma[J]. Radiology, 2019, 291(1): 15-20.
    [14]
    ZHANG Q, PENG Y S, LIU W, et al. Radiomics based on multimodal MRI for the differential diagnosis of benign and malignant breast lesions[J]. J Magn Reson Imaging, 2020, 52(2): 596-607.
    [15]
    杨易, 冯峰, 傅爱燕, 等. 基于MR-T2WI影像组学模型预测宫颈鳞癌临床分期[J]. 中国医学影像技术, 2021, 37(5): 725-730. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXX202105023.htm

    YANG Y, FENG F, BO A Y, et al. Radiomics model based on MR-T2WI inpredicting clinical staging of cervical squamous cell carcinoma[J]. Chin J Med Imaging Technol, 2021, 37(5): 725-730. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXX202105023.htm
    [16]
    崔达华, 赵莹, 刘爱连, 等. 基于动态增强MRI的影像组学列线图预测肝细胞癌切除术后3年复发的价值[J]. 中国临床医学影像杂志, 2019, 30(12): 863-868. https://www.cnki.com.cn/Article/CJFDTOTAL-LYYX201912010.htm

    CUI D H, ZHAO Y, LIU A L, et al. The value of radiomics nomogram based on dynamic enhanced MRI for predicting the recurrence of HCC in three years after hepatectomy[J]. J Chin Clin Med Imaging, 2019, 30(12): 863-868. https://www.cnki.com.cn/Article/CJFDTOTAL-LYYX201912010.htm
    [17]
    刘畅, 徐有莉, 杨锐, 等. 影像组学评估进展期胰腺癌化疗敏感性及预后[J]. 中国临床医学影像杂志, 2021, 32(2): 120-124. https://www.cnki.com.cn/Article/CJFDTOTAL-LYYX202102014.htm

    LIU C, XU Y L, YANG R, et al. Radiomics evaluation of chemosensitivity and prognosis of advanced pancreatic cancer[J]. J Chin Clin Med Imaging, 2021, 32(2): 120-124. https://www.cnki.com.cn/Article/CJFDTOTAL-LYYX202102014.htm
    [18]
    孔芳, 段艳华, 宋学林, 等. 高分辨率CT鉴别诊断良、恶性实性孤立性肺结节[J]. 中国医学影像技术, 2021, 37(8): 1168-1172. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXX202108014.htm

    KONG F, DUAN Y H, SONG X L, et al. High-resolution CT for differential diagnosis of benign and malignants solitary pulmonary nodules[J]. Chin J Med Imaging Technol, 2021, 37(8): 1168-1172. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXX202108014.htm
    [19]
    MA J C, WANG Q, REN Y C, et al. Automatic lung nodule classification with radiomics approach[C/OL]//PACS and Imaging Informatics: Next Generation and Innovations, 2016[2016-04-05].https://doi.org/10.1117/12.2220768.
    [20]
    FENG B, CHEN X M, CHEN Y H, et al. Radiomics nomogram for preoperative differentiation of lung tuberculoma from adenocarcinoma in solitary pulmonary solid nodule[J]. Eur J Radiol, 2020, 128: 109022. DOI: 10.1016/j.ejrad.2020.109022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (545) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return