Citation: | XU Zu-liang, SHENG Liang, HE Xia-xia, WANG Yan-na, WANG Guo-yu. Multi-sequence MRI image data-based machine learning model in the diagnosis of benign and malignant parotid gland tumours[J]. Chinese Journal of General Practice, 2023, 21(1): 108-111. doi: 10.16766/j.cnki.issn.1674-4152.002824 |
[1] |
江晓勇, 杨志辉, 陈希希, 等. 不同类型腮腺肿瘤的临床特点及远期复发情况分析[J]. 中华全科医学, 2019, 17(5): 790-792, 796. doi: 10.16766/j.cnki.issn.1674-4152.000793
JIANG X Y, YANG Z H, CHEN X X, et al. Clinical characteristics and long-term recurrence of different types of parotid gland tumors[J]. Chinese Journal of General Practice, 2019, 17(5): 790-792, 796. doi: 10.16766/j.cnki.issn.1674-4152.000793
|
[2] |
唐晨虎, 马东, 孙伟, 等. CT和MRI在腮腺良、恶性肿瘤鉴别诊断中的价值[J]. 中国临床医学影像杂志, 2021, 32(2): 90-93, 103. https://www.cnki.com.cn/Article/CJFDTOTAL-LYYX202102007.htm
TANG C H, MA D, SUN W, et al. Value of CT and MRI in differential diagnosis of benign and malignant parotid gland tumors[J]. Journal of China Clinic Medical Imaging, 2021, 32(2): 90-93, 103. https://www.cnki.com.cn/Article/CJFDTOTAL-LYYX202102007.htm
|
[3] |
张世坤, 王智明. 腮腺肿瘤诊断方法研究进展[J]. 中华实用诊断与治疗杂志, 2018, 32(4): 411-413. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZD201804031.htm
ZHANG S K, WANG Z M. Progress in the diagnosis of parotid gland tumors[J]. Chinese Journal of Practical Diagnosis and Therapy, 2018, 32(4): 411-413. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZD201804031.htm
|
[4] |
韩蕾, 邬小平. 磁共振成像技术在腮腺肿瘤诊断中的研究进展[J]. 磁共振成像, 2022, 13(2): 133-136. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC202202032.htm
HAN L, WU X P. Research progress of magnetic resonance imaging in the diagnosis of parotid gland tumors[J]. Magnetic Resonance Imaging, 2022, 13(2): 133-136. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC202202032.htm
|
[5] |
朱凌, 王灿, 杨功鑫, 等. 腮腺肿瘤性病变的影像学诊断思路及功能MRI价值评估[J]. 中华放射学杂志, 2022, 56(5): 587-590.
ZHU L, WANG C, YANG G X, et al. Imaging diagnosis of parotid neoplastic lesions and evaluation of functional MRI value. [J]. Chinese Journal of Radiology, 2022, 56(5): 587-590.
|
[6] |
LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017, 42: 60-88.
|
[7] |
BINCZYK F, PRAZUCH W, BOZEK P, et al. Radiomics and artificial intelligence in lung cancer screening[J]. Transl Lung Cancer Res, 2021, 10(2): 1186-1199.
|
[8] |
LIBERINI V, LAUDICELLA R, BALMA M, et al. Radiomics and artificial intelligence in prostate cancer: new tools for molecular hybrid imaging and theragnostics[J]. Eur Radiol Exp, 2022, 6(1): 27.
|
[9] |
LI Q, JIANG T, ZHANG C, et al. A nomogram based on clinical information, conventional ultrasound and radiomics improves prediction of malignant parotid gland lesions[J]. Cancer Lett, 2022, 527: 107-114.
|
[10] |
ZHENG Y M, XU W J, HAO D P, et al. A CT-based radiomics nomogram for differentiation of lympho-associated benign and malignant lesions of the parotid gland[J]. Eur Radiol, 2021, 31(5): 2886-2895.
|
[11] |
PILUDU F, MARZI S, RAVANELLI M, et al. MRI-based radiomics to differentiate between benign and malignant parotid tumors with external validation[J]. Front Oncol, 2021, 11: 656918. DOI: 10.3389/fonc.2021.656918.
|
[12] |
RAJKOMAR A, DEAN J, KOHANE I. Machine learning in medicine[J]. N Engl J Med, 2019, 380(14): 1347-1358.
|
[13] |
JUAN C J, HUANG T Y, LIU Y J, et al. Improving diagnosing performance for malignant parotid gland tumors using machine learning with multifeatures based on diffusion-weighted magnetic resonance imaging[J]. NMR Biomed, 2022, 35(3): e4642. DOI: 10.1002/nbm.4642.
|
[14] |
YUSHKEVICH P A, PIVEN J, HAZLETT H C, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability[J]. Neuroimage, 2006, 31(3): 1116-1128.
|
[15] |
VAN GRIETHUYSEN J, FEDOROV A, PARMAR C, et al. Computational radiomics system to decode the radiographic phenotype[J]. Cancer Res, 2017, 77(21): e104-e107.
|
[16] |
FRIEDMAN J, HASTIE T, TIBSHIRANI R. Regularization paths for generalized linear models via coordinate descent[J]. J Stat Softw, 2010, 33(1): 1-22.
|
[17] |
程顺达, 程颖, 孙士江. 基于机器学习的肿瘤智能辅助诊断方法[J]. 电子科技, 2022, 35(5): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKK202205009.htm
CHENG S D, CHENG Y, SUN S J. Intelligent auxiliary diagnosis of tumor based on machine learning[J]. Electronics Technology, 2022, 35(5): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKK202205009.htm
|
[18] |
杜文, 彭歆. 人工智能技术在口腔颌面部肿瘤诊断中应用的研究进展[J]. 口腔疾病防治, 2022, 30(5): 361-365. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYB202205009.htm
DU W, PENG Q. Research progress of artificial intelligence technology in the diagnosis of oral and maxillofacial tumors[J]. Prevention and Treatment of Oral Diseases, 2022, 30(5): 361-365. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYB202205009.htm
|
[19] |
冯利, 岳小飞. 9种结合式机器学习算法在肿瘤早期诊断中的准确性比较研究[J]. 医学信息学杂志, 2022, 43(5): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YXQB202205008.htm
FENG L, YUE X F. Comparative study on the accuracy of 9 combined machine learning algorithms in early diagnosis of tumor[J]. Journal of Medical Informatics, 2022, 43(5): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YXQB202205008.htm
|