Volume 21 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
LU Wen-ting, YAO Yuan, XIONG Jing, LIU Xiang-ping, LI Shuang-qing. Effect of machine learning in the auxiliary diagnosis model of cardiovascular disease[J]. Chinese Journal of General Practice, 2023, 21(1): 112-117. doi: 10.16766/j.cnki.issn.1674-4152.002825
Citation: LU Wen-ting, YAO Yuan, XIONG Jing, LIU Xiang-ping, LI Shuang-qing. Effect of machine learning in the auxiliary diagnosis model of cardiovascular disease[J]. Chinese Journal of General Practice, 2023, 21(1): 112-117. doi: 10.16766/j.cnki.issn.1674-4152.002825

Effect of machine learning in the auxiliary diagnosis model of cardiovascular disease

doi: 10.16766/j.cnki.issn.1674-4152.002825
Funds:

 2021YFS0014

 2017SZYZF0002

  • Received Date: 2022-02-03
    Available Online: 2023-04-07
  • Based on the survey, cardiovascular disease mortality ranks first in the total mortality rate of urban and rural residents in China. The incidence of cardiovascular diseases is still increasing. In the past decade, China has effectively promoted the construction of cardiovascular health. The state has called for shifting the main battlefield of cardiovascular disease from hospitals to communities. Therefore, improving the quality of primary care services are necessary to meet the growing health demand of the people. With the advent of the digital information age, machine learning is widely used in image recognition, speech recognition and natural language processing. Artificial intelligence (AI) is widely used in e-commerce, home, logistics and transportation, however, its impact on medical care has just begun. With the improvement of medical data availability and the rapid development of big data analysis methods, the successful application of artificial intelligence in medical field becomes possible. Under the guidance of relevant clinical problems, powerful AI technology can extract the clinical information hidden in massive data and then assist doctors in clinical decision-making. In recent years, with the national and social attention to primary medical care and the development of Internet information technology, the application of machine learning technology in the diagnosis and prediction of cardiovascular diseases has become a hot topic. Machine learning is gradually changing the way doctors diagnose diseases and their clinical decision-making, but the diagnosis and decision-making of each cardiovascular disease requires a certain degree of analysis with regard to disease and statistics, and the selection of the optimal machine learning algorithm can better solve clinical problems. By comparing the area under the curve, sensitivity, specificity, accuracy, F1 value, C statistical value and other quantitative indicators of the auxiliary diagnosis model of cardiovascular diseases in recent 5 years, this paper evaluates the advantages of machine learning under different disease classifications, systematically summarises the application of different AI methods in the diagnosis and prediction of cardiovascular diseases and evaluates related auxiliary diagnosis models.

     

  • loading
  • [1]
    中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521-545. doi: 10.3969/j.issn.1000-3614.2021.06.001

    Chinese Cardiovascular Health and Disease Report Compilation Group. Report on Cardiovascular Health and Diseases Burden in China: an Updated Summary of 2020[J]. Chinese Circulation Journal, 2021, 36(6): 521-545. doi: 10.3969/j.issn.1000-3614.2021.06.001
    [2]
    王雪松, 贾婧. 人工智能引领中国医疗未来[J]. 中国机关后勤, 2021(6): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJHQ202106027.htm

    WANG X S, JIA J. Ai leads the future of healthcare in China[J]. Chinese Government General Services, 2021(6): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJHQ202106027.htm
    [3]
    王晓丽, 施天行, 彭德荣, 等. 两种机器学习算法构建老年冠心病患病风险评估模型的效能比较研究[J]. 中华全科医学, 2021, 19(4): 523-527. doi: 10.16766/j.cnki.issn.1674-4152.001852

    WANG X L, SHI T X, PENG D R, et al. Comparative study on the effectiveness of two machine learning algorithms in constructing risk assessment models of coronary heart disease in the elderly[J]. Chinese Journal of General Practice, 2021, 19(4): 523-527. doi: 10.16766/j.cnki.issn.1674-4152.001852
    [4]
    袁波, 代华, 伍佳, 等. 人工智能在全科医学领域的应用[J]. 中华全科医学, 2021, 19(9): 1433-1436, 1572. doi: 10.16766/j.cnki.issn.1674-4152.002079

    YUAN B, DAI H, WU J, et al. Application of artificial intelligence applications in general practice[J]. Chinese Journal of General Practice, 2021, 19(9): 1433-1436, 1572. doi: 10.16766/j.cnki.issn.1674-4152.002079
    [5]
    ROMITI S, VINCIGUERRA M, SAADE W, et al. Artificial intelligence (AI) and cardiovascular diseases: an unexpected alliance[J]. Cardiol Res Pract, 2020, 2020: 4972346. DOI: 10.1155/2020/4972346.
    [6]
    GANDHI S, MOSLEH W, SHEN J, et al. Automation, machine learning, and artificial intelligence in echocardiography: a brave new world[J]. Echocardiography, 2018, 35(9): 1402-1418. doi: 10.1111/echo.14086
    [7]
    LOPEZ-JIMENEZ F, ATTIA Z, ARRUDA-OLSON A M, et al. Artificial intelligence in cardiology: present and future[J]. Mayo Clin Proc, 2020, 95(5): 1015-1039. doi: 10.1016/j.mayocp.2020.01.038
    [8]
    JOHNSON K W, TORRES SOTO J, GLICKSBERG B S, et al. Artificial intelligence in cardiology[J]. J Am Coll Cardiol, 2018, 71(23): 2668-2679. doi: 10.1016/j.jacc.2018.03.521
    [9]
    KRITTANAWONG C, ZHANG H J, WANG Z, et al. Artificial intelligence in precision cardiovascular medicine[J]. J Am Coll Cardiol, 2017, 69(21): 2657-2664. doi: 10.1016/j.jacc.2017.03.571
    [10]
    ALIZADEHSANI R, ABDAR M, ROSHANZAMIR M, et al. Machine learning-based coronary artery disease diagnosis: a comprehensive review[J]. Comput Biol Med, 2019, 111: 103346. DOI: 10.1016/j.compbiomed.2019.103346.
    [11]
    AYATOLLAHI H, GHOLAMHOSSEINI L, SALEHI M. Predicting coronary artery disease: a comparison between two data mining algorithms[J]. BMC Public Health, 2019, 19(1): 448. doi: 10.1186/s12889-019-6721-5
    [12]
    KIM J, KANG U, LEE Y. Statistics and deep belief network-based cardiovascular risk prediction[J]. Healthc Inform Res, 2017, 23(3): 169-175. doi: 10.4258/hir.2017.23.3.169
    [13]
    AWAN S E, BENNAMOUN M, SOHEL F, et al. Machine learning-based prediction of heart failure readmission or death: implications of choosing the right model and the right metrics[J]. ESC Heart Fail, 2019, 6(2): 428-435. doi: 10.1002/ehf2.12419
    [14]
    ACHARYA U R, OH S L, HAGIWARA Y, et al. A deep convolutional neural network model to classify heartbeats[J]. Comput Biol Med, 2017, 89: 389-396. doi: 10.1016/j.compbiomed.2017.08.022
    [15]
    SANNINO G, DE PIETRO G. A deep learning approach for ECG-based heartbeat classification for arrhythmia detection[J]. Future Gener Comput Syst, 2018, 86: 446-455. doi: 10.1016/j.future.2018.03.057
    [16]
    HANNUN A Y, RAJPURKAR P, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nat Med, 2019, 25(1): 65-69. doi: 10.1038/s41591-018-0268-3
    [17]
    KONG D D, ZHU J J, WU S S, et al. A novel IRBF-RVM model for diagnosis of atrial fibrillation[J]. Comput Methods Programs Biomed, 2019, 177: 183-192. doi: 10.1016/j.cmpb.2019.05.028
    [18]
    AU-YEUNG W M, REINHALL P G, BARDY G H, et al. Development and validation of warning system of ventricular tachyarrhythmia in patients with heart failure with heart rate variability data[J]. PLoS One, 2018, 13(11): e0207215. DOI: 10.1371/journal.pone.0207215.
    [19]
    ZHANG Y H, ZHANG J, BUTLER J, et al. Contemporary epidemiology, management, and outcomes of patients hospitalized for heart failure in China: results from the China Heart Failure (China-HF) registry[J]. J Card Fail, 2017, 23(12): 868-875. doi: 10.1016/j.cardfail.2017.09.014
    [20]
    DHARMARAJAN K, RICH M W. Epidemiology, pathophysiology, and prognosis of heart failure in older adults[J]. Heart Fail Clin, 2017, 13(3): 417-426. doi: 10.1016/j.hfc.2017.02.001
    [21]
    ATTIA Z I, KAPA S, LOPEZ-JIMENEZ F, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram[J]. Nat Med, 2019, 25(1): 70-74. doi: 10.1038/s41591-018-0240-2
    [22]
    LI B, DING S, SONG G L, et al. Computer-Aided diagnosis and clinical trials of cardiovascular diseases based on artificial intelligence technologies for risk-early warning model[J]. J Med Syst, 2019, 43(7): 228. doi: 10.1007/s10916-019-1346-x
    [23]
    MORTAZAVI B J, DOWNING N S, BUCHOLZ E M, et al. Analysis of machine learning techniques for heart failure readmissions[J]. Circ Cardiovasc Qual Outcomes, 2016, 9(6): 629-640. doi: 10.1161/CIRCOUTCOMES.116.003039
    [24]
    ANGRAAL S, MORTAZAVI B J, GUPTA A, et al. Machine learning prediction of mortality and hospitalization in heart failure with preserved ejection fraction[J]. JACC Heart Fail, 2020, 8(1): 12-21. doi: 10.1016/j.jchf.2019.06.013
    [25]
    WANG W Z, JIANG B, SUN H X, et al. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480 687 adults[J]. Circulation, 2017, 135(8): 759-771. doi: 10.1161/CIRCULATIONAHA.116.025250
    [26]
    GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2017, 390(10100): 1211-1259. doi: 10.1016/S0140-6736(17)32154-2
    [27]
    CHEN W W, GAO R L, LIU L S, et al. China cardiovascular diseases report 2015: a summary[J]. J Geriatr Cardiol, 2017, 14(1): 1-10.
    [28]
    ZELLWEGER M J, TSIRKIN A, VASILCHENKO V, et al. A new non-invasive diagnostic tool in coronary artery disease: artificial intelligence as an essential element of predictive, preventive, and personalized medicine[J]. EPMA J, 2018, 9(3): 235-247. doi: 10.1007/s13167-018-0142-x
    [29]
    LARROZA A, MATERKA A, LÓPEZ-LEREU M P, et al. Differentiation between acute and chronic myocardial infarction by means of texture analysis of late gadolinium enhancement and cine cardiac magnetic resonance imaging[J]. Eur J Radiol, 2017, 92: 78-83. doi: 10.1016/j.ejrad.2017.04.024
    [30]
    ACHARYA U R, FUJITA H, OH S L, et al. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals[J]. Inf Sci, 2017, 415-416: 190-198. doi: 10.1016/j.ins.2017.06.027
    [31]
    KWON J M, KIM K H, JEON K H, et al. Artificial intelligence algorithm for predicting mortality of patients with acute heart failure[J]. PLoS One, 2019, 14(7): e0219302. DOI: 10.1371/journal.pone.0219302.
    [32]
    HELD E, CAPE J, TINTLE N. Comparing machine learning and logistic regression methods for predicting hypertension using a combination of gene expression and next-generation sequencing data[J]. BMC Proc, 2016, 10(Suppl 7): 141-145.
    [33]
    AMBALE-VENKATESH B, YANG X, WU C O, et al. Cardiovascular event prediction by machine learning: the multi-ethnic study of atherosclerosis[J]. Circ Res, 2017, 121(9): 1092-1101. doi: 10.1161/CIRCRESAHA.117.311312
    [34]
    MASETIC Z, SUBASI A. Congestive heart failure detection using random forest classifier[J]. Comput Methods Programs Biomed, 2016, 130: 54-64. doi: 10.1016/j.cmpb.2016.03.020
    [35]
    DILLER G P, KEMPNY A, BABU-NARAYAN S V, et al. Machine learning algorithms estimating prognosis and guiding therapy in adult congenital heart disease: data from a single tertiary centre including 10 019 patients[J]. Eur Heart J, 2019, 40(13): 1069-1077. doi: 10.1093/eurheartj/ehy915
    [36]
    SENGUPTA P P, HUANG Y M, BANSAL M, et al. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy[J]. Circ Cardiovasc Imaging, 2016, 9(6): e004330. DOI: 10.1161/CIRCIMAGING.115.004330.
    [37]
    NARULA S, SHAMEER K, SALEM OMAR A M, et al. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography[J]. J Am Coll Cardiol, 2016, 68(21): 2287-2295. doi: 10.1016/j.jacc.2016.08.062
    [38]
    ZHANG J, GAJJALA S, AGRAWAL P, et al. Fully automated echocardiogram interpretation in clinical practice[J]. Circulation, 2018, 138(16): 1623-1635. doi: 10.1161/CIRCULATIONAHA.118.034338
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (328) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return