Volume 21 Issue 5
May  2023
Turn off MathJax
Article Contents
JIN Zikai, HU Yanqi, ZHANG Lida, ZHANG Junyu, LUO Foci, HAN Wei. Advances of miR-124 in cerebral ischemia-reperfusion injury[J]. Chinese Journal of General Practice, 2023, 21(5): 838-843. doi: 10.16766/j.cnki.issn.1674-4152.002996
Citation: JIN Zikai, HU Yanqi, ZHANG Lida, ZHANG Junyu, LUO Foci, HAN Wei. Advances of miR-124 in cerebral ischemia-reperfusion injury[J]. Chinese Journal of General Practice, 2023, 21(5): 838-843. doi: 10.16766/j.cnki.issn.1674-4152.002996

Advances of miR-124 in cerebral ischemia-reperfusion injury

doi: 10.16766/j.cnki.issn.1674-4152.002996
Funds:

 81973933

 皖人才办[2020]4号

 2017070802D151

 gxbjZD16

 2016H098

 2020efyzc03

  • Received Date: 2022-01-10
    Available Online: 2023-07-10
  • MicroRNAs (miRNAs) are a class of evolutionarily highly conserved non-coding medium-stranded small molecule RNAs that can participate in regulating the pathophysiological processes of cerebral ischemia-reperfusion injury (CIRI). They are also considered as potential diagnostic biomarkers of cerebral ischemia (CI). miR-124 is a preferentially expressed miRNA in the cerebral cortex and cerebellum, which binds to multiple targets in the body after ischemic brain injury. It regulates the development of ischemic brain injury through various mechanisms such as regulation of apoptosis, autophagy, neuroinflammation, oxidative stress, promotion of neuroprotection and regeneration and inhibition of excitatory amino acid toxicity. In addition, it has a certain potential for neurorestoration by regulating the development of brain injury. Moreover, it has a negative regulatory role in regulating apoptosis and neuroinflammation. However, there is a paucity of evidence on miR-124 regulation of ischemic brain injury at the clinical level. Therefore, its potential as a diagnostic biomarker and therapeutic target for ischemic brain injury needs to be further demonstrated in extensive clinical trials.

     

  • loading
  • [1]
    OTSU Y, NAMEKAWA M, TORIYABE M, et al. Strategies to prevent hemorrhagic transformation after reperfusion therapies for acute ischemic stroke: a literature review[J]. J Neurol Sci, 2020, 419: 117217. DOI: 10.1016/j.jns.2020.117217.
    [2]
    GRAHAM S H, LIU H. Life and death in the trash heap: the ubiquitin proteasome pathway and UCHL1 in brain aging, neurodegenerative disease and cerebral ischemia[J]. Ageing Res Rev, 2017, 34: 30-38. doi: 10.1016/j.arr.2016.09.011
    [3]
    JEYASEELAN K, LIM K Y, ARMUGAM A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion[J]. Stroke, 2008, 39(3): 959-966. doi: 10.1161/STROKEAHA.107.500736
    [4]
    LEWIS B P, BUIGE C B, BARTEL D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell, 2005, 120(1): 15-20. doi: 10.1016/j.cell.2004.12.035
    [5]
    KHOSHNAM S E, WINLOW W, FARBOOD Y, et al. Emerging roles of microRNAs in ischemic stroke: as possible therapeutic agents[J]. J Stroke, 2017, 19(2): 166-187. doi: 10.5853/jos.2016.01368
    [6]
    ẢKERBLOM M, SACHDEVA R, BARDE I, et al. MicroRNA-124 is a subventricular zone neuronal fate determinant[J]. J Neurosci, 2012, 32(26): 8879-8889. doi: 10.1523/JNEUROSCI.0558-12.2012
    [7]
    GONZÁLEZ-GIRALDO Y, CAMARGO A, LÓPEZ-LEÓN S, et al. A functional SNP in MIR124-1, a brain expressed miRNA gene, is associated with aggressiveness in a Colombian sample[J]. Eur Psychiatry, 2015, 30(4): 499-503. doi: 10.1016/j.eurpsy.2015.03.002
    [8]
    LIU X, FENG Z, DU L, et al. The potential role of microRNA-124 in cerebral ischemia injury[J]. Int J Mol Sci, 2019, 21(1): 120. doi: 10.3390/ijms21010120
    [9]
    YANG J, ZHANG X, CHEN X, et al. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia[J]. Mol Ther Nucleic Acids, 2017, 7: 278-287. doi: 10.1016/j.omtn.2017.04.010
    [10]
    OBENG E. Apoptosis (programmed cell death) and its signals: a review[J]. Braz J Biol, 2021, 81(4): 1133-1143. doi: 10.1590/1519-6984.228437
    [11]
    ERMINE C M, BIVARD A, PARSONS M W, et al. The ischemic penumbra: from concept to reality[J]. Int J Stroke, 2021, 16(5): 497-509. doi: 10.1177/1747493020975229
    [12]
    HU S, CAO Q, XU P, et al. Rolipram stimulates angiogenesis and attenuates neuronal apoptosis through the cAMP/cAMPresponsive element binding protein pathway following ischemic stroke in rats[J]. Exp Ther Med, 2016, 11(3): 1005-1010. doi: 10.3892/etm.2015.2958
    [13]
    WANG W, WANG X, CHEN L, et al. The microRNA miR-124 suppresses seizure activity and regulates CREB1 activity[J]. Expert Rev Mol Med, 2016, 18: e4. DOI: 10.1017/erm.2016.3.
    [14]
    靳贺超, 于文涛, 刘晓, 等. 补肾活血方对血管性痴呆大鼠脑海马细胞凋亡及ERK2, CREB表达的影响[J]. 中国实验方剂学杂志, 2018, 24(12): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201812021.htm

    JIN H C, YU W T, LIU X, et al. Effect of Bushen Huoxue Formula on Hippocampal Cells Apoptosis and ERK2, CREB Expression in Rats with Vascular Dementia[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2018, 24(12): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201812021.htm
    [15]
    HAMZEI TAI S, KHO W, ASWENDT M, et al. Dynamic modulation of microglia/macrophage polarization by miR-124 after focal cerebral ischemia[J]. J Neuroimmune Pharmacol, 2016, 11(4): 733-748. doi: 10.1007/s11481-016-9700-y
    [16]
    CHEN X M, YU Y H, WANG L, et al. Effect of the JAK2/STAT3 signaling pathway on nerve cell apoptosis in rats with white matter injury[J]. Eur Rev Med Pharmacol Sci, 2019, 23(1): 321-327.
    [17]
    WANG S, ZHOU J, KANG W, et al. Tocilizumab inhibits neuronal cell apoptosis and activates STAT3 in cerebral infarction rat model[J]. Bosn J Basic Med Sci, 2016, 16(2): 145-150.
    [18]
    LIU X S, CHOPP M, ZHANG R L, et al. MicroRNA profiling in subventricular zone after stroke: miR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway[J]. PLoS One, 2011, 6(8): e23461. DOI: 10.1371/journal.pone.0023461.
    [19]
    TIAN R, WANG S. Electroacupuncture reduced apoptosis of hippocampal neurons in mice with cerebral infarction by regulating the Notch3 signaling pathway[J]. J Mol Neurosci, 2019, 67(3): 456-466. doi: 10.1007/s12031-018-1253-5
    [20]
    ZHU F, LIU J L, LI J P, et al. MicroRNA-124 (miR-124) regulates Ku70 expression and is correlated with neuronal death induced by ischemia/reperfusion[J]. J Mol Neurosci, 2014, 52(1): 148-155. doi: 10.1007/s12031-013-0155-9
    [21]
    LIU X, LI F, ZHAO S, et al. MicroRNA-124-mediated regulation of inhibitory member of apoptosis-stimulating protein of p53 family in experimental stroke[J]. Stroke, 2013, 44(7): 1973-1980. doi: 10.1161/STROKEAHA.111.000613
    [22]
    YUN Q, JIANG M, WANG J, et al. Overexpression Bax interacting factor-1 protects cortical neurons against cerebral ischemia-reperfusion injury through regulation of ERK1/2 pathway[J]. J Neurol Sci, 2015, 357(1-2): 183-191. doi: 10.1016/j.jns.2015.07.027
    [23]
    HAM O, LEE S Y, LEE C Y, et al. Let-7b suppresses apoptosis and autophagy of human mesenchymal stem cells transplanted into ischemia/reperfusion injured heart 7by targeting caspase-3[J]. Stem Cell Res Ther, 2015, 6(1): 147. doi: 10.1186/s13287-015-0134-x
    [24]
    YAO L, ZHU Z, WU J, et al. MicroRNA-124 regulates the expression of p62/p38 and promotes autophagy in the inflammatory pathogenesis of Parkinson's disease[J]. Faseb J, 2019, 33(7): 8648-8665. doi: 10.1096/fj.201900363R
    [25]
    ZHU H, WANG J, SHAO Y, et al. Catalpol may improve axonal growth via regulating miR-124 regulated PI3K/AKT/mTOR pathway in neurons after ischemia[J]. Ann Transl Med, 2019, 7(14): 306. doi: 10.21037/atm.2019.06.25
    [26]
    ZHAO J, DONG Y, CHEN X, et al. p53 Inhibition protects against neuronal ischemia/reperfusion injury by the p53/PRAS40/mTOR pathway[J]. Oxid Med Cell Longev, 2021: 4729465. DOI: 10.1155/2021/4729465.
    [27]
    PAN J, LI X, GUO F, et al. Ginkgetin attenuates cerebral ischemia-reperfusion induced autophagy and cell death via modulation of the NF-κB/p53 signaling pathway[J]. Biosci Rep, 2019, 39(9): BSR20191452. DOI: 10.1042/BSR20191452.
    [28]
    LIU K, CHEN W, LEI S, et al. Wild-type and mutant p53 differentially modulate miR-124/iASPP feedback following pohotodynamic therapy in human colon cancer cell line[J]. Cell Death Dis, 2017, 8(10): e3096. DOI: 10.1038/cddis.2017.477.
    [29]
    BURROWS F, HALEY M J, SCOTT E, et al. Systemic inflammation affects reperfusion following transient cerebral ischaemia[J]. Exp Neurol, 2016, 277: 252-260. doi: 10.1016/j.expneurol.2016.01.013
    [30]
    LANG H, ZHAO F, ZHANG T, et al. Micro RNA-149 contributes to scarless wound healing by attenuating inflammatory response[J]. Mol Med Rep, 2017, 16(2): 2156-2162. doi: 10.3892/mmr.2017.6796
    [31]
    KWON H S, KOH S H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes[J]. Transl Neurodegener, 2020, 9(1): 42. doi: 10.1186/s40035-020-00221-2
    [32]
    WEN Z, HOU W, WU W, et al. 6'-O-Galloylpaeoniflorin attenuates cerebral ischemia reperfusion-induced neuroinflammation and oxidative stress via PI3K/Akt/Nrf2 activation[J]. Oxid Med Cell Longev, 2018: 8678267. DOI: 10.1155/2018/8678267.
    [33]
    SUN H, LI J J, FENG Z R, et al. MicroRNA-124 regulates cell pyroptosis during cerebral ischemia-reperfusion injury by regulating STAT3[J]. Exp Ther Med, 2020, 20(6): 227.
    [34]
    SU X, YE Y, YANG Y, et al. The effect of SPTLC2 on promoting neuronal apoptosis is alleviated by MiR-124-3p through TLR4 signalling pathway[J]. Neurochem Res, 2019, 44(9): 2113-2122. doi: 10.1007/s11064-019-02849-7
    [35]
    GAO J, CHEN N, LI N, et al. Neuroprotective effects of trilobatin, a novel naturally occurring Sirt3 agonist from lithocarpus polystachyus rehd, mitigate cerebral ischemia/reperfusion injury: Involvement of TLR4/NF-κB and Nrf2/Keap-1 signaling[J]. Antioxid Redox Signal, 2020, 33(2): 117-143. doi: 10.1089/ars.2019.7825
    [36]
    REKUVIENE E, IVANOVIENE L, BORUTAITE V, et al. Rotenone decreases ischemia-induced injury by inhibiting mitochondrial permeability transition in mature brains[J]. Neuroence Letters, 2017, 653: 45-50. doi: 10.1016/j.neulet.2017.05.028
    [37]
    LIU D, WANG H, ZHANG Y, et al. Protective effects of chlorogenic acid on cerebral ischemia/reperfusion injury rats by regulating oxidative stress-related Nrf2 pathway[J]. Drug Des Devel Ther, 2020, 14: 51-60. doi: 10.2147/DDDT.S228751
    [38]
    HZFEZ H A, KAMEL M A, OSMAN M Y, et al. Ameliorative effects of astaxanthin on brain tissues of Alzheimer's disease-like model: Cross talk between neuronal-specific microRNA-124 and related pathways[J]. Mol Cell Biochem, 2021, 476(5): 2233-2249. doi: 10.1007/s11010-021-04079-4
    [39]
    HIGUCHI F, UCHIDA S, YAMAGATA H, et al. Hippocampal microRNA-124 enhances chronic stress resilience in mice[J]. J Neurosci, 2016, 36(27): 7253-7267. doi: 10.1523/JNEUROSCI.0319-16.2016
    [40]
    LIU H, WU X, LUO J, et al. Adiponectin peptide alleviates oxidative stress and NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/GSK-3β[J]. Exp Neurol, 2020, 329: 113302. DOI: 10.1016/j.expneurol.2020.113302.
    [41]
    LI Y, SUN J, GU L, et al. Protective effect of CTRP6 on cerebral ischemia/reperfusion injury by attenuating inflammation, oxidative stress and apoptosis in PC12 cells[J]. Mol Med Rep, 2020, 22(1): 344-352. doi: 10.3892/mmr.2020.11108
    [42]
    ZHU H, WANG J, SHAO Y, et al. Catalpol may improve axonal growth via regulating miR-124 regulated PI3K/AKT/mTOR pathway in neurons after ischemia[J]. Ann Transl Med, 2019, 7(14): 306. doi: 10.21037/atm.2019.06.25
    [43]
    CHIDAMBARAM S B, RATHIPRIYA A G, BOLLA S R, et al. Dendritic spines: revisiting the physiological role[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2019, 92: 161-193. doi: 10.1016/j.pnpbp.2019.01.005
    [44]
    GHAHFARROKHI A M, JAMI M S, CHALESHTORI M H. Upregulation of neuroprogenitor and neural markers via enforced miR-124 and growth factor treatment[J]. Int J Mol Cell Med, 2020, 9(1): 62-70.
    [45]
    CHEN S H, SUN H, ZHANG Y M, et al. Effects of acupuncture at Baihui (GV 20) and Zusanli (ST 36) on peripheral serum expression of MicroRNA 124, laminin and integrin β1 in rats with cerebral ischemia reperfusion injury[J]. Chin J Integr Med, 2016, 22(1): 49-55. doi: 10.1007/s11655-015-2112-7
    [46]
    MOKABBER H, NAJAFZADEH N, MOHAMMADZADEH VARDIN M. MiR-124 promotes neural differentiation in mouse bulge stem cells by repressing Ptbp1 and Sox9[J]. J Cell Physiol, 2019, 234(6): 8941-8950. doi: 10.1002/jcp.27563
    [47]
    SARAIVA C, TALHADA D, RAI A, et al. MicroRNA-124-loaded nanoparticles increase survival and neuronal differentiation of neural stem cells in vitro but do not contribute to stroke outcome in vivo[J]. PLoS One, 2018, 13(3): e0193609. DOI: 10.1371/journal.pone.0193609.
    [48]
    YU Y L, CHOU R H, SHYU W C, et al. Smurf2-mediated degradation of EZH2 enhances neuron differentiation and improves functional recovery after ischaemic stroke[J]. EMBO Mol Med, 2013, 5(4): 531-547. doi: 10.1002/emmm.201201783
    [49]
    DOEPPNER T R, KALTWASSER B, SANCHEZMENDOZA E H, et al. Lithium-induced neuroprotection in stroke involves increased miR-124 expression, reduced RE1-silencing transcription factor abundance and decreased protein deubiquitination by GSK3β inhibition-independent pathways[J]. J Cereb Blood Flow Metab, 2017, 37(3): 914-926. doi: 10.1177/0271678X16647738
    [50]
    PONOMAREV E D, VEREMEYKO T, WEINER H L. MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS[J]. Glia, 2013, 61(1): 91-103. doi: 10.1002/glia.22363
    [51]
    ZHAO J J, ZANG Y H, LIU Y, et al. Interaction between miRNA-155 targeting neuronal pacemaker ion channels and release of amino acid transmitters during cerebral ischemia[J]. Eur Rev Med Pharmacol Sci, 2021, 25(7): 3007-3014.
    [52]
    MONTES DE OCA BALDERAS P. Flux-Independent NMDAR signaling: Molecular mediators, cellular functions, and complexities[J]. Int J Mol Sci, 2018, 19(12): 3800. DOI: 10.3390/ijms19123800.
    [53]
    HELLSTEN S V, HAGGLUND M G, ERIKSSON M M, et al. The neuronal and astrocytic protein SL C38A10 transports glutamine, glutamate, and aspartate, suggesting a role in neurotransmission[J]. FEBS Open Bio, 2017, 7(6): 730-746. doi: 10.1002/2211-5463.12219
    [54]
    THORN S R, FISHER D, ZHANG J, et al. Neuronal nitric oxide synthase and N-methyl-D-aspartate neurons in experimental carbon monoxide poisoning[J]. Toxicol Appl Pharmacal, 2014, 194(3): 280-295.
    [55]
    HUANG W Y, JIANG C, YE H B, et al. MiR-124 upregulates astrocytic glutamate transporter-1 via the Akt and mTOR signaling pathway post ischemic stroke[J]. Brain Res Bull, 2019, 149: 231-239. doi: 10.1016/j.brainresbull.2019.04.013
    [56]
    SERPE C, MONACO L, RELUCENTI M, et al. Microglia-derived small extracellular vesicles reduce glioma growth by modifying tumor cell metabolism and enhancing glutamate clearance through miR-124[J]. Cells, 2021, 10(8): 2066. DOI: 10.3390/cells10082066.
    [57]
    PATEL D C, TEWARI B P, CHAUNSALI L, et al. Neuron-glia interactions in the pathophysiology of epilepsy[J]. Nat Rev Neurosci, 2019, 20(5): 282-297. doi: 10.1038/s41583-019-0126-4
    [58]
    MAJDI A, MAHMOUDI J, SADIGH-ETEGHAD S, et al. The interplay of microRNAs and post-ischemic glutamate exci-totoxicity: an emergent research field in stroke medicine[J]. Neurol Sci, 2016, 37(11): 1765-1771. doi: 10.1007/s10072-016-2643-5
    [59]
    ZOU R, WU Z, CUI S. Electroacupuncture pretreatment attenuates blood-brain barrier disruption following cerebral ischemia/reperfusion[J]. Mol Med Rep, 2015, 12(2): 2027-2034. doi: 10.3892/mmr.2015.3672
    [60]
    王宝祥, 许俊杰, 陆霞, 等. SHH信号通路对大脑中动脉梗死模型大鼠脑缺血后的保护作用[J]. 中华全科医学, 2020, 18(7): 1112-1114, 1160. doi: 10.16766/j.cnki.issn.1674-4152.001441

    WANG B X, XYU J J, LU X, et al. Protective effect of SHH signaling pathway on middle cerebral artery occlusion model rats after cerebral ischemia[J]. Chinese Journal of General Practice, 2020, 18(7): 1112-1114, 1160. doi: 10.16766/j.cnki.issn.1674-4152.001441
    [61]
    LI Y, CHEN Y, LI J, et al. Co-delivery of microRNA-21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapy[J]. Cancer Sci, 2017, 108(7): 1493-1503. doi: 10.1111/cas.13267
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(2)

    Article Metrics

    Article views (277) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return