Citation: | HUANG Qian, LIU Deliang, LI Huilin. Research progress on correlations between CD36 and type 2 diabetes mellitus[J]. Chinese Journal of General Practice, 2023, 21(7): 1206-1210. doi: 10.16766/j.cnki.issn.1674-4152.003085 |
[1] |
BALLAN R, SAAD S M I. Characteristics of the gut microbiota and potential effects of probiotic supplements in individuals with type 2 diabetes mellitus[J]. Foods, 2021, 10(11): 2528. doi: 10.3390/foods10112528
|
[2] |
SUN H, SAEEDI P, KARURANGA S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183: 109119. DOI: 10.1016/j.diabres.2021.109119.
|
[3] |
LE TORIELLEC E, MURALITHARAN V, CHADEBECH P, et al. New molecular basis associated with CD36-negative phenotype in the sub-Saharan African population[J]. Transfusion, 2020, 60(11): 2482-2488. doi: 10.1111/trf.15980
|
[4] |
SHU H, PENG Y, HANG W, et al. The role of CD36 in cardiovascular disease[J]. Cardiovasc Res, 2022, 118(1): 115-129. doi: 10.1093/cvr/cvaa319
|
[5] |
ABDULAMEER Q A, AZIZ I H, ABDULHASSAN I A, et al. The effect of genetic variation of CD36 gene on sample of Iraqi patients with essential hypertension[J]. Iraqi J Biotechnol, 2021, 1(20): 1-6.
|
[6] |
ZHAO L, VARGHESE Z, MOORHEAD J F, et al. CD36 and lipid metabolism in the evolution of atherosclerosis[J]. Br Med Bull, 2018, 126(1): 101-112. doi: 10.1093/bmb/ldy006
|
[7] |
FAN C, LIANG W, WEI M, et al. Effects of D-Chiro-Inositol on glucose metabolism in db/db mice and the associated underlying mechanisms[J]. Front Pharmacol, 2020, 11: 354. doi: 10.3389/fphar.2020.00354
|
[8] |
JAMES D E, STÖCKLI J, BIRNBAUM M J. The aetiology and molecular landscape of insulin resistance[J]. Nat Rev Mol Cell Biol, 2021, 22(11): 751-771. doi: 10.1038/s41580-021-00390-6
|
[9] |
AHMED B, SULTANA R, GREENE M W. Adipose tissue and insulin resistance in obese[J]. Biomed Pharmacother, 2021, 137: 111315. DOI: 10.1016/j.biopha.2021.111315.
|
[10] |
GLATZ J, LUIKEN J. Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization[J]. J Lipid Res, 2018, 59(7): 1084-1093. doi: 10.1194/jlr.R082933
|
[11] |
罗小青, 曾晗, 谭伟, 等. CD36基因缺失改善高脂饮食诱导的糖代谢异常并促进肝脏脂质积聚[J]. 生理学报, 2021, 73(5): 805-812. doi: 10.13294/j.aps.2021.0021
LUO X Q, ZENG H, TAN W, et al. Deletion of CD36 gene ameliorates glucose metabolism abnormality induced by high-fat diet and promotes liver lipid accumulation[J]. Acta Physiologica Sinica, 2021, 73(5): 805-812. doi: 10.13294/j.aps.2021.0021
|
[12] |
WILSON C G, TRAN J L, ERION D M, et al. Hepatocyte-specific disruption of CD36 attenuates fatty liver and improves insulin sensitivity in HFD-fed mice[J]. Endocrinology, 2016, 157(2): 570-585. doi: 10.1210/en.2015-1866
|
[13] |
STENEBERG P, SYKARAS A G, BACKLUND F, et al. Hyperinsulinemia enhances hepatic expression of the fatty acid transporter CD36 and provokes hepatosteatosis and hepatic insulin resistance[J]. J Biol Chem, 2015, 290(31): 19034-19043. doi: 10.1074/jbc.M115.640292
|
[14] |
LI Y, YANG P, ZHAO L, et al. CD36 plays a negative role in the regulation of lipophagy in hepatocytes through an AMPK-dependent pathway[J]. J Lipid Res, 2019, 60(4): 844-855. doi: 10.1194/jlr.M090969
|
[15] |
GARBACZ W G, LU P, MILLER T M, et al. Hepatic overexpression of CD36 improves glycogen homeostasis and attenuates high-fat diet-induced hepatic steatosis and insulin resistance[J]. Mol Cell Biol, 2016, 36(21): 2715-2727. doi: 10.1128/MCB.00138-16
|
[16] |
YANG P, ZENG H, TAN W, et al. Loss of CD36 impairs hepatic insulin signaling by enhancing the interaction of PTP1B with IR[J]. FASEB J, 2020, 34(4): 5658-5672. doi: 10.1096/fj.201902777RR
|
[17] |
DAQUINAG A C, GAO Z, FUSSELL C, et al. Fatty acid mobilization from adipose tissue is mediated by CD36 posttranslational modifications and intracellular trafficking[J]. JCI Insight, 2021, 6(17): e147057. DOI: 10.1172/jci.insight.147057.
|
[18] |
CYR Y, BISSONNETTE S, LAMANTIA V, et al. White adipose tissue surface expression of LDLR and CD36 is associated with risk factors for type 2 diabetes in adults with obesity[J]. Obesity, 2020, 28(12): 2357-2367. doi: 10.1002/oby.22985
|
[19] |
FERNANDES-DA-SILVA A, MIRANDA C S, SANTANA-OLIVEIRA D A, et al. Endoplasmic reticulum stress as the basis of obesity and metabolic diseases: focus on adipose tissue, liver, and pancreas[J]. Eur J Nutr, 2021, 60(6): 2949-2960. doi: 10.1007/s00394-021-02542-y
|
[20] |
KARUNAKARAN U, ELUMALAI S, MOON J, et al. CD36 Signal transduction in metabolic diseases: novel insights and therapeutic targeting[J]. Cells, 2021, 10(7): 1833. doi: 10.3390/cells10071833
|
[21] |
ZHAO J, RUI H, YANG M, et al. CD36-mediated lipid accumulation and activation of NLRP3 inflammasome lead to podocyte injury in obesity-related glomerulopathy[J]. Mediators Inflamm, 2019, 2019: 1-16. DOI: 10.1155/2019/3172647.
|
[22] |
JESUS J D C R, MURARI A S D P, RADLOFF K, et al. Activation of the adipose tissue NLRP3 inflammasome pathway in cancer cachexia[J]. Front Immunol, 2021, 12: 729182. DOI: 10.3389/fimmu.2021.729182.
|
[23] |
MENTESE A, DOGRAMACI S, DEMIR S, et al. The effect of homocysteine on the expression of CD36, PPARγ, and C/EBPα in adipose tissue of normal and obese mice[J]. Arch Physiol Biochem, 2021, 127(5): 437-444. doi: 10.1080/13813455.2019.1648517
|
[24] |
LIU M, TSO P, WOODS S C. Receptor CD36 links a risk-associated allele to obesity and metabolic disorders[J]. J Biol Chem, 2018, 293(34): 13349-13350. doi: 10.1074/jbc.H118.004818
|
[25] |
LUO X, LI Y, YANG P, et al. Obesity induces preadipocyte CD36 expression promoting inflammation via the disruption of lysosomal calcium homeostasis and lysosome function[J]. Ebiomedicine, 2020, 56: 102797. DOI: 10.1016/j.ebiom.2020.102797.
|
[26] |
MENGESTE A M, RUSTAN A C, LUND J. Skeletal muscle energy metabolism in obesity[J]. Obesity, 2021, 29(10): 1582-1595. doi: 10.1002/oby.23227
|
[27] |
GILBERT M. Role of skeletal muscle lipids in the pathogenesis of insulin resistance of obesity and type 2 diabetes[J]. J Diabetes Investig, 2021, 12(11): 1934-1941. doi: 10.1111/jdi.13614
|
[28] |
VERPOORTEN S, SFYRI P, SCULLY D, et al. Loss of CD36 protects against diet-induced obesity but results in impaired muscle stem cell function, delayed muscle regeneration and hepatic steatosis[J]. Acta Physiol, 2019, 228(3): e13395. DOI: 10.1111/apha.13395.
|
[29] |
SAMOVSKI D, SUN J, PIETKA T, et al. Regulation of AMPK activation by CD36 links fatty acid uptake to β-oxidation[J]. Diabetes, 2015, 64(2): 353-359. doi: 10.2337/db14-0582
|
[30] |
GLATZ J C, LUIKEN J F P. Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization[J]. J Lipid Res, 2018, 59(7): 1084-1093. doi: 10.1194/jlr.R082933
|
[31] |
MAUNDER E, PLEWS D J, WALLIS G A, et al. Peak fat oxidation is positively associated with vastus lateralis CD36 content, fed-state exercise fat oxidation, and endurance performance in trained males[J]. Eur J Appl Physiol, 2022, 122(1): 93-102. doi: 10.1007/s00421-021-04820-3
|
[32] |
SHOU J, CHEN P, XIAO W. Mechanism of increased risk of insulin resistance in aging skeletal muscle[J]. Diabetol Metab Syndr, 2020, 12(1): 1-10. doi: 10.1186/s13098-019-0485-z
|
[33] |
孙婧瑜, 苏亚娟, 秦黎黎, 等. FAT/CD36表达及转位在有氧运动改善老年小鼠骨骼肌胰岛素敏感性中的作用[J]. 中国体育科技, 2021, 57(2): 3-11. doi: 10.16470/j.csst.2019124
SUN J Y, SU Y J, QIN L L, et al. Aerobic exercise improves aging induced skeletal muscle insulin sensitivity through FAT/CD36 expression and translocation[J]. China Sport Science and Technology, 2021, 57(2): 3-11. doi: 10.16470/j.csst.2019124
|
[34] |
MOON J S, KARUNAKARAN U, ELUMALAI S, et al. Metformin prevents glucotoxicity by alleviating oxidative and ER stress-induced CD36 expression in pancreatic beta cells[J]. J Diabetes Complications, 2017, 31(1): 21-30. doi: 10.1016/j.jdiacomp.2016.09.001
|
[35] |
KARUNAKARAN U, ELUMALAI S, MOON J S, et al. CD36 dependent redoxosomes promotes ceramide-mediated pancreatic β-cell failure via p66Shc activation[J]. Free Radic Biol Med, 2019, 134: 505-515. doi: 10.1016/j.freeradbiomed.2019.02.004
|
[36] |
NAGAO M, ESGUERRA J, ASAI A, et al. Potential protection against type 2 diabetes in obesity through lower CD36 expression and improved exocytosis in β-cells[J]. Diabetes, 2020, 69(6): 1193-1205. doi: 10.2337/db19-0944
|
[37] |
TENG W, LI Y, DU M, et al. Sulforaphane prevents hepatic insulin resistance by blocking serine palmitoyltransferase 3-mediated ceramide biosynthesis[J]. Nutrients, 2019, 11(5): 1185. doi: 10.3390/nu11051185
|
[38] |
HANDBERG A, LEVIN K, HØJLUND K, et al. Identification of the oxidized low-density lipoprotein scavenger receptor CD36 in plasma: a novel marker of insulin resistance[J]. Circulation, 2006, 114(11): 1169-1176. doi: 10.1161/CIRCULATIONAHA.106.626135
|
[39] |
HANDBERG A, NORBERG M, STENLUND H, et al. Soluble CD36 (sCD36) clusters with markers of insulin resistance, and high sCD36 is associated with increased type 2 diabetes risk[J]. J Clin Endocrinol Metab, 2010, 95(4): 1939-1946. doi: 10.1210/jc.2009-2002
|
[40] |
KIM H J, MOON J S, PARK I R, et al. A novel index using soluble CD36 is associated with the prevalence of type 2 diabetes mellitus: comparison study with triglyceride-glucose index[J]. Endocrinol Metab, 2017, 32(3): 375-382. doi: 10.3803/EnM.2017.32.3.375
|
[41] |
CASTELBLANCO E, SANJURJO L, FALGUERA M, et al. Circulating soluble CD36 is similar in type 1 and type 2 diabetes mellitus versus non-diabetic subjects[J]. J Clin Med, 2019, 8(5): 710. doi: 10.3390/jcm8050710
|
[42] |
王声翰, 杨菊红, 郑妙艳, 等. 可溶性CD36与2型糖尿病及其并发症的关系[J]. 中华全科医学, 2020, 18(11): 1921-1924. doi: 10.16766/j.cnki.issn.1674-4152.001654
WANG S H, YANG J H, ZHENG M Y, et al. Association of soluble CD36 with type 2 diabetes and its complications[J]. Chinese Journal of General Practice, 2020, 18(11): 1921-1924. doi: 10.16766/j.cnki.issn.1674-4152.001654
|
[43] |
曾子文. 基于"舌-心(神)-欲"探讨不同糖代谢状态下的脂肪偏好及敏感性[D]. 广州: 广州中医药大学, 2020.
ZENG Z W. To explore the fat preference and sensitivity under different glucose metabolism states based on "tongue, heart (spirit) and desire"[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2020.
|