Citation: | YANG Zhongyu, LI Wei, ZHU Guangzheng, ZHAO Wenyi, XU Jing. Effect of SFRP1 on the proliferation and invasion of head and neck squamous cell carcinoma and its mechanism[J]. Chinese Journal of General Practice, 2023, 21(12): 2040-2044. doi: 10.16766/j.cnki.issn.1674-4152.003285 |
[1] |
CHANG M S, AZIN M, DEMEHRI S. Cutaneous squamous cell carcinoma: the frontier of cancer immunoprevention[J]. Annu Rev Pathol, 2022, 17: 101-119. doi: 10.1146/annurev-pathol-042320-120056
|
[2] |
ALYOUSSEF A, TAHA M. Blocking Wnt as a therapeutic target in mice model of skin cancer[J]. Arch Dermatol Res, 2019, 311(8): 595-605. doi: 10.1007/s00403-019-01939-4
|
[3] |
GEORGY S R, RUDIATMOKO D R, AUDEN A, et al. Identification of a novel GRHL3/HOPX/Wnt/beta-Catenin proto-oncogenic axis in squamous cell carcinoma of the esophagus[J]. Cell Mol Gastroenterol Hepatol, 2022, 15(5): 1051-1069.
|
[4] |
LIANG J, LIU L, TANG H, et al. UVB-induced SFRP1 methylation potentiates skin damage by promoting cell apoptosis and DNA damage[J]. Exp Dermatol, 2022, 31(9): 1443-1453. doi: 10.1111/exd.14621
|
[5] |
FANE M E, CHHABRA Y, ALICEA G M, et al. Stromal changes in the aged lung induce an emergence from melanoma dormancy[J]. Nature, 2022, 606(7913): 396-405. doi: 10.1038/s41586-022-04774-2
|
[6] |
BELLEI B, CAPUTO S, MIGLIANO E, et al. Simultaneous targeting tumor cells and cancer-associated fibroblasts with a paclitaxel-hyaluronan bioconjugate: in vitro evaluation in non-Melanoma skin cancer[J]. Biomedicines, 2021, 9(6): 597. DOI: 10.3390/biomedicines9060597.
|
[7] |
BAHARUDIN R, TIENG F, LEE L H, et al. Epigenetics of SFRP1: the dual roles in human cancers[J]. Cancers (Basel), 2020, 12(2): 445. DOI: 10.3390/cancers12020445.
|
[8] |
MOSA M H, MICHELS B E, MENCHE C, et al. A Wnt-Induced phenotypic switch in cancer-associated fibroblasts inhibits EMT in colorectal cancer[J]. Cancer Res, 2020, 80(24): 5569-5582. doi: 10.1158/0008-5472.CAN-20-0263
|
[9] |
DOBRE M, SALVI A, PELISENCO I A, et al. Crosstalk between DNA methylation and gene mutations in colorectal cancer[J]. Front Oncol, 2021, 11: 697409. DOI: 10.3389/fonc.2021.697409.
|
[10] |
MENYHART O, FEKETE J T, GYORFFY B. Gene expression indicates altered immune modulation and signaling pathway activation in ovarian cancer patients resistant to topotecan[J]. Int J Mol Sci, 2019, 20(11): 2750. DOI: 10.3390/ijms20112750.
|
[11] |
MIAO Y, WANG J, LI Q, et al. Prognostic value and immunological role of PDCD1 gene in pan-cancer[J]. Int Immunopharmacol, 2020, 89(Pt B): 107080. DOI: 10.1016/j.intimp.2020.10708.
|
[12] |
CHAUVIN J M, ZAROUR H M. TIGIT in cancer immunotherapy[J]. J Immunother Cancer, 2020, 8(2): e000957. DOI: 10.1136/jitc-2020-000957.
|
[13] |
GAUGER K J, CHENAUSKY K L, MURRAY M E, et al. SFRP1 reduction results in an increased sensitivity to TGF-beta signaling[J]. BMC Cancer, 2011, 11: 59. doi: 10.1186/1471-2407-11-59
|
[14] |
KUBILIUTE R, ZALIMAS A, BAKAVICIUS A, et al. Clinical significance of ADAMTS19, BMP7, SIM1, and SFRP1 promoter methylation in renal clear cell carcinoma[J]. Onco Targets Ther, 2021, 14: 4979-4990. doi: 10.2147/OTT.S330341
|
[15] |
ZHANG H, SUN D, QIU J, et al. SFRP1 inhibited the epithelial ovarian cancer through inhibiting Wnt/beta-catenin signaling[J]. Acta Biochim Pol, 2019, 66(4): 393-400.
|
[16] |
PAN X, MA X. A novel six-gene signature for prognosis prediction in ovarian cancer[J]. Front Genet, 2020, 11: 1006. DOI: 10.3389/fgene.2020.01006.
|
[17] |
SUNKARA R R, SARATE R M, SETIA P, et al. SFRP1 in skin tumor initiation and cancer stem cell regulation with potential implications in epithelial cancers[J]. Stem Cell Reports, 2020, 14(2): 271-284. doi: 10.1016/j.stemcr.2019.12.006
|
[18] |
戴思远, 蒋婕, 韩瑞, 等. 口腔鳞状细胞癌中乙酰肝素酶、E-cadherin、N-cadherin的表达及其意义[J]. 中华全科医学, 2022, 20(6): 948-951. doi: 10.16766/j.cnki.issn.1674-4152.002495
DAI S Y, JIANG J, HAN R, et al. Expression and significance of heparanase, E-cadherin, and N-cadherin in oral squamous cell carcinoma[J]. Chinese Journal of General Practice, 2022, 20(6): 948-951. doi: 10.16766/j.cnki.issn.1674-4152.002495
|