Volume 22 Issue 12
Dec.  2024
Turn off MathJax
Article Contents
QIU Tian, QU Xiangyu, LI Haoling, XIA Wenqing, DAI Hengwen, GU Lin. The relationship between ceRNA network construction and prognosis of hepatocellular carcinoma based on UCSC database[J]. Chinese Journal of General Practice, 2024, 22(12): 2139-2143. doi: 10.16766/j.cnki.issn.1674-4152.003816
Citation: QIU Tian, QU Xiangyu, LI Haoling, XIA Wenqing, DAI Hengwen, GU Lin. The relationship between ceRNA network construction and prognosis of hepatocellular carcinoma based on UCSC database[J]. Chinese Journal of General Practice, 2024, 22(12): 2139-2143. doi: 10.16766/j.cnki.issn.1674-4152.003816

The relationship between ceRNA network construction and prognosis of hepatocellular carcinoma based on UCSC database

doi: 10.16766/j.cnki.issn.1674-4152.003816
Funds:

 2022AH051489

 S202210367142

  • Received Date: 2024-02-13
    Available Online: 2025-01-20
  •   Objective  To construct and investigate a prognostic-related competitive endogenous RNA network in hepatocellular carcinoma and explore its clinical implications.  Methods  The genetic RNA, mRNA sequencing data, and clinical data for HCC were obtained from the UCSC Xena database. Firstly, differential expression and survival analyses were used to identify high-risk genes. The KS test, logistic regression, and univariate and multivariate Cox regression analyses were used to determine the potential of these genes as independent prognostic factors. The associated biological pathways were analyzed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. After that, ENCORI was used to predict miRNA target genes. The ceRNA network was constructed using the Cytoscape tool.  Results  A direct regulatory relationship was found between hsa-miR-101-3p and 25 lncRNAs, with 6 lncRNAs identified as competitive binders to miRNAs. Among them, GSEC exhibited the strongest correlation with the co-expression of hsa-miR-101-3p and STIP1 (r=-0.380, r=0.490), suggesting its potential role as a regulatory axis in regulating hepatocellular carcinoma proliferation, invasion, and apoptosis.  Conclusion  The regulatory network of STIP1/hsa-miR-101-3p/lncRNA GSEC identified in hepatocellular carcinoma provides valuable insights into the molecular biological mechanisms of HCC, and lncRNA may serve as a potential prognostic biomarker for HCC patients.

     

  • loading
  • [1]
    甘景卓. 原发性肝癌中LncRNA OSER1-AS1与miR-612表达的相关性及生物学意义[J]. 现代消化及介入诊疗, 2022, 27(1): 45-50.

    GAN J Z. Correlation and biological significance of LncRNA OSER1-AS1 and miR-612 expression in primary hepatocellular carcinoma[J]. Modern Gastroenterology and Interventional Diagnosis and Treatment, 2022, 27(1): 45-50.
    [2]
    黎作茶, 韦武均, 韦彩成, 等. lncRNA RP5-940J5.9表达水平与肝细胞癌患者预后相关性研究[J]. 右江医学, 2022, 50(3): 181-185.

    LI Z T, WEI W J, WEI C C, et al. Correlation between lncRNA RP5-940J5.9 expression level and prognosis of patients with hepatocellular carcinoma[J]. Youjiang Medicine, 2022, 50(3): 181-185.
    [3]
    盖智敏, 陈颖丽, 刘姝含, 等. 细胞质lncRNA在ceRNA网络中对肝癌的预后作用[J]. 内蒙古大学学报(自然科学版), 2024, 55(1): 54-64.

    GAI Z M, CHEN Y L, LIU S H, et al. Prognostic effect of cytoplasmic lncRNA in ceRNA network on liver cancer[J]. Journal of Inner Mongolia University(Natural Science Edition), 2024, 55(1): 54-64.
    [4]
    孙永红, 陈永林. 胃癌相关长链非编码RNA的作用及其意义[J]. 临床与病理杂志, 2021, 41(4): 892-898.

    SUN Y H, CHEN Y L. The role and significance of long non-coding RNA related to gastric cancer[J]. Journal of Clinical and Pathology, 2021, 41(4): 892-898.
    [5]
    HUANG S, ZHANG J, LAI X, et al. Identification of novel tumor microenvironment-related long noncoding RNAs to determine the prognosis and response to immunotherapy of hepatocellular carcinoma patients[J]. Front Mol Biosci, 2021, 8: 781307. DOI: 10.3389/fmolb.2021.781307.
    [6]
    周倩, 邵建国. MiRNA在HBV相关肝癌中的研究进展[J]. 南通大学学报(医学版), 2022, 42(3): 257-261.

    ZHOU Q, SHAO J G. Research progress of MiRNA in HBV-associated liver cancer[J]. Journal of Nantong University(Medical Science), 2022, 42(3): 257-261.
    [7]
    ZHANG Y, LUO M, CUI X, et al. Long noncoding RNA NEAT1 promotes ferroptosis by modulating the miR-362-3p/MIOX axis as a ceRNA[J]. Cell Death Differ, 2022, 29(9): 1850-1863. doi: 10.1038/s41418-022-00970-9
    [8]
    夏文广, 张浩, 魏川雄, 等. 甲状腺乳头状癌相关ceRNA网络的生物信息学分析[J]. 中华全科医学, 2023, 21(4): 693-697. doi: 10.16766/j.cnki.issn.1674-4152.002962

    XIA W G, ZHANG H, WEI C X, et al. Bioinformatics analysis of ceRNA network related to papillary thyroid carcinoma[J]. Chinese Journal of General Practice, 2023, 21(4): 693-697. doi: 10.16766/j.cnki.issn.1674-4152.002962
    [9]
    卢春苗, 莫书天, 韩创业, 等. KIF2C在肝细胞癌中的作用及ceRNA调控网络构建[J]. 广西医科大学学报, 2023, 40(2): 189-198.

    LU C M, MO S T, HAN C Y, et al. The role of KIF2C in hepatocellular carcinoma and the construction of ceRNA regulatory network[J]. Journal of Guangxi Medical University, 2023, 40(2): 189-198.
    [10]
    闵航. LncRNA GSEC通过miR-101-3p/PSPH/VEGF轴调控肝细胞癌进展的机制研究[D]. 武汉: 武汉科技大学, 2023.

    MIN H. Mechanism of LncRNA GSEC regulating hepatocellular carcinoma progression through miR-101-3p/PSPH/VEGF axis[D]. Wuhan: Wuhan University of Science and Technology, 2023.
    [11]
    张静, 张晓, 张瑞, 等. miR-101-3p通过靶向抑制斯坦尼钙调节蛋白1(STC1)促进巨噬细胞对人肝癌细胞的吞噬作用[J]. 细胞与分子免疫学杂志, 2023, 39(4): 339-344.

    ZHANG J, ZHANG X, ZHANG R, et al. miR-101-3p promotes macrophage phagocytosis of human hepatocellular carcinoma cells by targeting inhibition of Stanley calmodulin 1 (STC1)[J]. Journal of Cell and Molecular Immunology, 2023, 39(4): 339-344.
    [12]
    邵毅博, 王春莉, 杨力. miR-101在肝癌发展中的作用研究[J]. 医用生物力学, 2021, 36(S1): 332.

    SHAO Y B, WANG C L, YANG L. Study of the role of miR-101 in the development of liver cancer[J]. Medical Biomechanics, 2021, 36(S1): 332.
    [13]
    MA X L, TANG W G, YANG M J, et al. Serum STIP1, a novel indicator for microvascular invasion, predicts outcomes and treatment response in hepatocellular carcinoma[J]. Front Oncol, 2020, 10: 511. DOI: 10.3389/fonc.2020.00511.
    [14]
    CHAO A, LIAO M J, CHEN S H, et al. JAK2-Mediated phosphorylation of stress-induced phosphoprotein-1 (STIP1) in human cells[J]. Int J Mol Sci, 2022, 23(5): 2420. DOI: 10.3390/ijms23052420.
    [15]
    DOURADO M R, ELSERAGY A, DA COSTA B C, et al. Stress induced phosphoprotein 1 overexpression controls proliferation, migration and invasion and is associated with poor survival in oral squamous cell carcinoma[J]. Front Oncol, 2023, 12: 1085917. DOI: 10.3389/fonc.2022.1085917.
    [16]
    XIA Y, CHEN J, LIU G, et al. STIP1 knockdown suppresses colorectal cancer cell proliferation, migration and invasion by inhibiting STAT3 pathway[J]. Chem Biol Interact, 2021, 341: 109446. DOI: 10.1016/j.cbi.2021.109446.
    [17]
    KRAFFT U, TSCHIRDEWAHN S, HESS J, et al. STIP1 tissue expression is associated with survival in chemotherapy-treated bladder cancer patients[J]. Pathol Oncol Res, 2020, 26(2): 1243-1249. doi: 10.1007/s12253-019-00689-y
    [18]
    LI R, LI P, WANG J, et al. STIP1 down-regulation inhibits glycolysis by suppressing PKM2 and LDHA and inactivating the Wnt/β-catenin pathway in cervical carcinoma cells[J]. Life Sci, 2020, 258: 118190. DOI: 10.1016/j.lfs.2020.118190.
    [19]
    WANG J H, GONG C, GUO F J, et al. Knockdown of STIP1 inhibits the invasion of CD133 positive cancer stem like cells of the osteosarcoma MG63 cell line via the PI3K/Akt and ERK1/2 pathways[J]. Int J Mol Med, 2020, 46(6): 2251-2259.
    [20]
    WANG K, JIANG S, HUANG A, et al. GOLPH3 promotes cancer growth by interacting with STIP1 and regulating telomerase activity in pancreatic ductal adenocarcinoma[J]. Front Oncol, 2020, 10: 575358. DOI: 10.3389/fonc.2020.575358.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (17) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return