Volume 23 Issue 2
Feb.  2025
Turn off MathJax
Article Contents
HE Fang, WANG Shu, XIA Wenjuan, HUANG Pengfei, WANG Hua. Construction and validation of a Nomogram model for assessing the risk of multidrug-resistant pulmonary tuberculosis infection in young people[J]. Chinese Journal of General Practice, 2025, 23(2): 211-214. doi: 10.16766/j.cnki.issn.1674-4152.003869
Citation: HE Fang, WANG Shu, XIA Wenjuan, HUANG Pengfei, WANG Hua. Construction and validation of a Nomogram model for assessing the risk of multidrug-resistant pulmonary tuberculosis infection in young people[J]. Chinese Journal of General Practice, 2025, 23(2): 211-214. doi: 10.16766/j.cnki.issn.1674-4152.003869

Construction and validation of a Nomogram model for assessing the risk of multidrug-resistant pulmonary tuberculosis infection in young people

doi: 10.16766/j.cnki.issn.1674-4152.003869
Funds:

 AHWJ2022b040

  • Received Date: 2024-03-12
    Available Online: 2025-03-27
  •   Objective  This study aims to explore the risk factors for multidrug-resistant infections in young tuberculosis patients and construct a risk Nomogram model for assessing the incidence risk of multidrug-resistant tuberculosis.  Methods  From January 2019 to December 2021, 203 young patients with pulmonary tuberculosis were admitted to Anhui Chest Hospital, and their clinical data were collected. Using a random number table, the patients were divided into a validation group of 67 patients and a modeling group of 136 patients. Among them, there were 75 drug-resistant cases and 61 non-drug-resistant cases. Lasso regression and logistic regression were employed to analyze the risk factors for drug resistance in young pulmonary tuberculosis patients, following which a Nomogram prediction model was constructed and validated.  Results  Logistic regression analysis showed pulmonary cavitary lesions, innutrition, elevated glycosylated hemoglobin, positive sputum smear microscopy, and low income as independent risk factors for multidrug-resistant infection in young pulmonary tuberculosis patients. Using these risk factors, a Nomogram predictive model was constructed, with an area under the curve of 0. 904 for the modeling group and 0. 743 for the validation group, indicating good diagnostic accuracy. Hosmer-Lemeshow test results indicated no significant difference between the observed and model-predicted risks in both the modeling and validation datasets (P = 0. 438, 0. 733), suggesting good model fit and consistency with actual infection risks.  Conclusion  The Nomogram model, established using Lasso logistic regression analysis, exhibits high predictive capability for multidrug-resistant infection in young pulmonary tuberculosis patients. This enables prompt implementation of early intervention measures, ultimately improving prognosis.

     

  • loading
  • [1]
    RANI C, PANDEY R K, UBAID-ULLAH S. Tuberculosis: an old enemy of mankind and possible next pandemic[M]. Emerging Pandemics. CRC Press, 2023: 47-62.
    [2]
    CHAKAYA J, KHAN M, NTOUMI F, et al. Global tuberculosis report 2020-reflections on the global TB burden, treatment and prevention efforts[J]. Int J Infect Dis, 2021, 113 Suppl 1(Suppl 1): S7-S12.
    [3]
    CHAKAYA J, PETERSEN E, NANTANDA R, et al. The WHO global tuberculosis 2021 report-not so good news and turning the tide back to end TB[J]. Int J Infect Dis, 2022, 124 Suppl 1: S26-S29. DOI: 10.1016/j.ijid.2022.03.011.
    [4]
    AKALU T Y, CLEMENTS A C, WOLDE H F, et al. Economic burden of multidrug-resistant tuberculosis on patients and households: a global systematic review and meta-analysis[J]. Sci Rep, 2023, 13(1): 22361. DOI: 10.1038/s41598-023-47094-9.
    [5]
    MIGLIORI G B, BEZOZZI G, GIRARDI E, et al. Clinical and operational value of the extensively drug-resistant tuberculosis definition[J]. Eur Respir J, 2007, 30(4): 623-626.
    [6]
    SANKINENI S, CHAUHAN S, SHEGOKAR R, et al. Global health and tuberculosis; past, present, and future[M]. Tubercular Drug Delivery Systems: Advances in Treatment of Infectious Diseases. Springer, 2023: 1-13.
    [7]
    李伟. 耐多药肺结核患者心理健康与生活质量的影响因素分析[J]. 中国现代药物应用, 2023, 17(19): 13-17.

    LI W. Analysis of factors influencing mental health and quality of life in patients with multidrug-resistant tuberculosis[J]. Chinese Journal of Modern Drug Application, 2023, 17(19): 13-17.
    [8]
    符婷, 黄丽菊, 杨进军, 等. 308例耐多药肺结核患者心理健康状况及其影响因素分析[J]. 中国防痨杂志, 2020, 42(4): 366-371.

    FU T, HUANG L J, YANG J J, et al. Psychological health status of 308 patients with MDR-PTB and its influencing factors[J]. Chinese Journal of Antituberculosis, 2020, 42(4): 366-371.
    [9]
    邹级谦. 肺结核诊断标准[J]. 结核病健康教育, 2008(1): 7-9.

    ZOU J Q. Diagnostic criteria for pulmonary tuberculosis[J]. Tuberculosis Health Education, 2008(1): 7-9.
    [10]
    卢春容, 房宏霞, 陆普选, 等. WHO 2021年全球结核病报告: 全球与中国关键数据分析[J]. 新发传染病电子杂志, 2021, 6(4): 368-372.

    LU C R, FANG H X, LU P X, et al. The global tuberculosis report 2021: key data analysis for China and the global world[J]. Electronic Journal of Emerging Infectious Diseases, 2021, 6(4): 368-372.
    [11]
    徐彩红, 赵雁林. 从《2020年全球结核病报告》看我国结核病防治工作[J]. 中华传染病杂志, 2021, 39(7): 392-397.

    XU C H, ZHAO Y L. To evaluate the tuberculosis prevention and control situation in China from the perspective of global tuberculosis report 2020[J]. Chinese Journal of Infectious Diseases, 2021, 39(7): 392-397.
    [12]
    王睿荣, 巨芳萍, 王娟, 等. 肺结核患者凝血功能和血小板计数变化及其临床意义[J]. 血栓与止血学, 2021, 27(2): 294-295.

    WANG R R, JU F P, WANG J, et al. Changes and Clinical Significance of Coagulation Function and Platelet Count in Patients with Pulmonary Tuberculosis[J]. Chinese Journal of Thrombosis and Hemostasis, 2021, 27(2): 294-295.
    [13]
    郑珍慧, 江巧敏, 张尊敬. 基于倾向性评分法评估耐药肺结核患者疾病感知与服药依从性的相关性[J]. 中华全科医学, 2023, 21(11): 1872-1875. doi: 10.16766/j.cnki.issn.1674-4152.003246

    ZHENG Z H, JIANG Q M, ZHANG Z J. Evaluation of the association between disease perception and medication adherence in patients with drug-resistant pulmonary tuberculosis using the propensity score method[J]. Chinese Journal of General Practice, 2023, 21(11): 1872-1875. doi: 10.16766/j.cnki.issn.1674-4152.003246
    [14]
    刘慧梅, 张瑞梅, 刘加彬, 等. 1∶2个体匹配青年肺结核患者耐多药临床危险因素分析[J]. 山西医科大学学报, 2016, 47(9): 834-836.

    LIU H M, ZHANG R M, LIU J B, et al. A 1∶2 pair-matched study on risk factors of multi-drug resistance in young tuberculosis patients[J]. Journal of Shanxi Medical University, 2016, 47(9): 834-836.
    [15]
    WANG Y, CHUNG M J, SKRAHIN A, et al. Radiological signs associated with pulmonary multi-drug resistant tuberculosis: an analysis of published evidences[J]. Quant Imaging Med Surg, 2018, 8(2): 161-173.
    [16]
    CHENG N L, WU S, LUO X L, et al. A comparative study of chest computed tomography findings: 1 030 cases of drug-sensitive tuberculosis versus 516 cases of drug-resistant tuberculosis[J]. Infect Drug Resist, 2021, 14: 1115-1128.
    [17]
    RAJAMANICKAM A, MUNISANKAR S, DOLLA C K, et al. Undernutrition is associated with perturbations in T cell-, B cell-, monocyte-, and dendritic cell-subsets in latent Mycobacterium tuberculosis infection[J]. PLoS One, 2019, 14(12): e225611. DOI: 10.1371/journal.pone.0225611.
    [18]
    AYELIGN B, NEGASH M, GENETU M, et al. Immunological impacts of diabetes on the susceptibility of mycobacterium tuberculosis[J]. J Immunol Res, 2019, 2019(1): 6196532. DOI: 10.1155/2019/6196532.
    [19]
    何启军, 姚敏, 吴秀继, 等. 免疫法测结核抗体与痰涂片镜检法的比较[J]. 中国热带医学, 2017, 17(4): 427-428.

    HE Q J, YAO M, WU X J, et al. Comparison of immune method and sputum smear microscopy method on anti-body tuberculosis[J]. China Tropical Medicine, 2017, 17(4): 427-428.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (12) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return