Volume 23 Issue 7
Jul.  2025
Turn off MathJax
Article Contents
YUE Yunxiang, REN Yangyang, WANG Gang, KANG Boyuan, XU Xilin. Exploring the mechanism of alcohol's effect on osteoporosis based on the immune system[J]. Chinese Journal of General Practice, 2025, 23(7): 1199-1203. doi: 10.16766/j.cnki.issn.1674-4152.004097
Citation: YUE Yunxiang, REN Yangyang, WANG Gang, KANG Boyuan, XU Xilin. Exploring the mechanism of alcohol's effect on osteoporosis based on the immune system[J]. Chinese Journal of General Practice, 2025, 23(7): 1199-1203. doi: 10.16766/j.cnki.issn.1674-4152.004097

Exploring the mechanism of alcohol's effect on osteoporosis based on the immune system

doi: 10.16766/j.cnki.issn.1674-4152.004097
Funds:

 8237153419

 国中医药人教发〔2020〕7号

 GZ20210136

 ZHY2023-099

  • Received Date: 2024-10-29
    Available Online: 2025-10-25
  • Osteoporosis (OP) is a skeletal disease characterized by a decrease in bone strength and an increased risk of fractures, posing both medical and socioeconomic threats. Alcohol abuse is prevalent worldwide, and due to unique drinking cultures, alcohol-related diseases are highly prevalent in our country. Long-term alcohol abuse can lead to bone metabolism disorders, bone loss, and degradation of bone microstructure by directly affecting osteoblasts, osteoclasts, and their precursor cells, or indirectly influencing protein metabolism, liver function, and endocrine systems, thereby triggering osteoporosis. However, the pathogenesis of osteoporosis has not yet been fully elucidated. The immune system is a complex network composed of various molecules, cells, tissues, and organs, and it is a crucial system for maintaining human life, aimed at protecting the body from infections and malignant cells. Recent studies have shown a close relationship between alcohol and the immune system, particularly the effects of alcohol on innate and adaptive immunity, as well as the correlation of many immune cells, such as neutrophils, macrophages, T cells, and B cells, with osteoporosis. Therefore, this article discusses the impact of alcohol on the immune system to elucidate the pathogenesis of osteoporosis, aiming to provide new insights and evidence for the mechanistic research of osteoporosis, the development of new drugs, and new treatment strategies. It also finds that alcohol disrupts the dynamic balance of immune cells (such as inhibiting the generation of neutrophils, macrophages, T and B lymphocytes) and the activity of related signaling pathways (including OPG/RANKL/RANK, JAK/STAT3, NF-κB, and JNK signaling pathways), while abnormally regulating the secretion of pro-inflammatory factors (such as IL-1, IL-6, IL-17, TNF-α, and IFN-γ), thereby directly or indirectly disrupting the homeostatic balance between bone formation and resorption, ultimately leading to the occurrence of osteoporosis.

     

  • loading
  • [1]
    冯成桢, 李俊伟, 李琰华. 钙剂及维生素D治疗原发性骨质疏松症的有效性与安全性研究进展[J]. 中华全科医学, 2020, 18(4): 642-645. doi: 10.16766/j.cnki.issn.1674-4152.001319

    FENG C Z, LI J W, LI Y H. Progress in the efficacy and safety of calcium and vitamin D in the treatment of primary osteoporosis[J]. Chinese Journal of General Practice, 2020, 18(4): 642-645. doi: 10.16766/j.cnki.issn.1674-4152.001319
    [2]
    World Health Organization. Global status report on alcohol and health 2018[M]. Geneva: World Health Organization, 2018.
    [3]
    GÓMEZ NAVARRO R. Prevalence of risk factors for fragility fracture in men aged 40 to 90 years of a Spanish basic Rural Health Area[J]. Rev Esp Salud Publica, 2011, 85(5): 491-498. doi: 10.1590/S1135-57272011000500008
    [4]
    PACCOU J, EDWARDS M H, WARD K, et al. Relationships between bone geometry, volumetric bone mineral density and bone microarchitecture of the distal radius and tibia with alcohol consumption[J]. Bone, 2015, 78: 122-129. doi: 10.1016/j.bone.2015.05.002
    [5]
    RUIZ-CORTES K, VILLAGELIU D N, SAMUELSON D R. Innate lymphocytes: role in alcohol-induced immune dysfunction[J]. Front Immunol, 2022, 13: 934617. DOI: 10.3389/fimmu.2022.934617.
    [6]
    TSUKASAKI M, TAKAYANAGI H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease[J]. Nat Rev Immunol, 2019, 19(10): 626-642. doi: 10.1038/s41577-019-0178-8
    [7]
    ZHANG W D, GAO R H, RONG X, et al. Immunoporosis: role of immune system in the pathophysiology of different types of osteoporosis[J]. Front Endocrinol, 2022, 13: 965258. DOI: 10.3389/fendo.2022.965258.
    [8]
    SAXENA Y, ROUTH S, MUKHOPADHAYA A. Immunoporosis: role of innate immune cells in osteoporosis[J]. Front Immunol, 2021, 12: 687037. DOI: 10.3389/fimmu.2021.687037.
    [9]
    SHI X, DELUCIA A L, BAO J X, et al. Alcohol abuse and disorder of granulopoiesis[J]. Pharmacol Ther, 2019, 198: 206-219. doi: 10.1016/j.pharmthera.2019.03.001
    [10]
    HERATH T D K, LARBI A, TEOH S H, et al. Neutrophil-mediated enhancement of angiogenesis and osteogenesis in a novel triple cell co-culture model with endothelial cells and osteoblasts[J]. Tissue Eng Regen Med, 2018, 12(2): e1221-e1236.
    [11]
    王星月, 江蕾, 杨俊伟. 巨噬细胞能量代谢与肾脏疾病的研究进展[J]. 中华全科医学, 2020, 18(8): 1348-1352. doi: 10.16766/j.cnki.issn.1674-4152.001504

    WANG X Y, JIANG L, YANG J W. The role of metabolism in macrophage in Kidney diseases[J]. Chinese Journal of General Practice, 2020, 18(8): 1348-1352. doi: 10.16766/j.cnki.issn.1674-4152.001504
    [12]
    LOCATI M, CURTALE G, MANTOVANI A. Diversity, mechanisms and significance of macrophage plasticity[J]. Annu Rev Pathol, 2020, 15: 123-147. doi: 10.1146/annurev-pathmechdis-012418-012718
    [13]
    MALHERBE D C, MESSAOUDI I. Transcriptional and epigenetic regulation of monocyte and macrophage dysfunction by chronic alcohol consumption[J]. Front Immunol, 2022, 13: 911951. DOI: 10.3389/fimmu.2022.911951.
    [14]
    FENG D, HWANG S, GUILLOT A, et al. Inflammation in alcohol-associated hepatitis: pathogenesis and therapeutic targets[J]. Cell Mol Gastroenterol Hepatol, 2024, 18(3): 101352. DOI: 10.1016/j.jcmgh.2024.04.009.
    [15]
    KIM A, SAIKIA P, NAGY L E. miRNAs involved in M1/M2 hyperpolarization are clustered and coordinately expressed in alcoholic hepatitis[J]. Front Immunol, 2019, 10: 1295. DOI: 10.3389/fimmu.2019.01295.
    [16]
    SURESHCHANDRA S, RAIS M, STULL C, et al. Transcriptome profiling reveals disruption of innate immunity in chronic heavy ethanol consuming female rhesus macaques[J]. PLoS One, 2016, 11(7): e0159295. DOI: 10.1371/journal.pone.0159295.
    [17]
    张明东, 路喆鑫, 顾红兵, 等. T细胞在主动脉瓣钙化中的研究进展[J]. 中华全科医学, 2023, 21(5): 853-856. doi: 10.16766/j.cnki.issn.1674-4152.002999

    ZHANG M D, LU Z X, GU H B, et al. Research progress on T cells in aortic valve calcification[J]. Chinese Journal of General Practice, 2023, 21(5): 853-856. doi: 10.16766/j.cnki.issn.1674-4152.002999
    [18]
    PASALA S, BARR T, MESSAOUDI I. Impact of alcohol abuse on the adaptive immune system[J]. Alcohol Res Curr Rev, 2015, 37(2): 185-197. doi: 10.35946/arcr.v37.2.04
    [19]
    PATERSON C W, GUTIERREZ M B, COOPERSMITH C M, et al. Impact of chronic alcohol exposure on conventional and regulatory murine T cell subsets[J]. Front Immunol, 2023, 14: 1142614. DOI: 10.3389/fimmu.2023.1142614.
    [20]
    PERCIVAL S S, SIMS C A. Wine modifies the effects of alcohol on immune cells of mice[J]. J Nutr, 2000, 130(5): 1091-1094. doi: 10.1093/jn/130.5.1091
    [21]
    SONG K, COLEMAN R A, ZHU X, et al. Chronic ethanol consumption by mice results in activated splenic T cells[J]. J Leukoc Biol, 2002, 72(6): 1109-1116. doi: 10.1189/jlb.72.6.1109
    [22]
    SONG K, COLEMAN R A, ALBER C, et al. TH1 cytokine response of CD57+ T-cell subsets in healthy controls and patients with alcoholic liver disease[J]. Alcohol, 2001, 24(3): 155-167. doi: 10.1016/S0741-8329(01)00146-X
    [23]
    MATOS L C, BATISTA P, MONTEIRO N, et al. Lymphocyte subsets in alcoholic liver disease[J]. World J Hepatol, 2013, 5(2): 46-55. doi: 10.4254/wjh.v5.i2.46
    [24]
    VIDALI M, HIETALA J, OCCHINO G, et al. Immune responses against oxidative stress-derived antigens are associated with increased circulating tumor necrosis factor-alpha in heavy drinkers[J]. Free Radic Biol Med, 2008, 45(3): 306-311. doi: 10.1016/j.freeradbiomed.2008.04.012
    [25]
    SRIVASTAVA R K, SAPRA L. The rising era of "immunoporosis": role of immune system in the pathophysiology of osteoporosis[J]. J Inflamm Res, 2022, 15: 1667-1698. doi: 10.2147/JIR.S351918
    [26]
    NAUSEEF W M, BORREGAARD N. Neutrophils at work[J]. Nat Immunol, 2014, 15(7): 602-611. doi: 10.1038/ni.2921
    [27]
    TAN Y, CHEN J, JIANG Y, et al. The anti-periodontitis action of metformin via targeting NLRP3 inflammasome[J]. Arch Oral Biol, 2020, 114: 104692. DOI: 10.1016/j.archoralbio.2020.104692.
    [28]
    CHEN K, JIAO Y, LIU L, et al. Communications between bone marrow macrophages and bone cells in bone remodeling[J]. Front Cell Dev Biol, 2020, 8: 598263. DOI: 10.3389/fcell.2020.598263.
    [29]
    王嘉玉, 颜春鲁, 安方玉, 等. 基于Th17/Treg平衡探讨骨质疏松症研究进展[J]. 中国免疫学杂志, 2024, 40(6): 1283-1291.

    WANG J Y, YAN C L, AN F Y, et al. Research progress of osteoporosis based on Th17/Treg balance[J]. Chinese Journal of Immunology, 2024, 40(6): 1283-1291.
    [30]
    DAR H Y, SINGH A, SHUKLA P, et al. High dietary salt intake correlates with modulated Th17-Treg cell balance resulting in enhanced bone loss and impaired bone-microarchitecture in male mice[J]. Sci Rep, 2018, 8(1): 2503. DOI: 10.1038/s41598-018-20896-y.
    [31]
    HUANG F, WONG P, LI J, et al. Osteoimmunology: the correlation between osteoclasts and the Th17/Treg balance in osteoporosis[J]. J Cell Mol Med, 2022, 26(13): 3591-3597. doi: 10.1111/jcmm.17399
    [32]
    ZAISS M M, AXMANN R, ZWERINA J, et al. Treg cells suppress osteoclast formation: a new link between the immune system and bone[J]. Arthritis Rheum, 2007, 56(12): 4104-4112. doi: 10.1002/art.23138
    [33]
    胡文慧, 邓金霞, 苏展鹏, 等. T细胞免疫在骨重建和骨再生中的研究进展[J]. 浙江大学学报(医学版), 2024, 53(4): 450-459.

    HU W H, DENG J X, SU Z P, et al. Advances on T cell immunity in bone remodeling and bone regeneration[J]. Journal of Zhejiang University(Medical Sciences), 2024, 53(4): 450-459.
    [34]
    姚琼璐, 杨雨清, 徐涛涛. 免疫微环境对绝经后骨质疏松症的影响[J]. 中国骨质疏松杂志, 2023, 29(6): 902-907, 921.

    YAO Q L, YANG Y Q, XU T T. Effect of immune microenvironment on postmenopausal osteoporosis[J]. Chinese Journal of Osteoporosis, 2023, 29(6): 902-907, 921.
    [35]
    FRASE D, LEE C, NACHIAPPAN C, et al. The inflammatory contribution of B-lymphocytes and neutrophils in progression to osteoporosis[J]. Cells, 2023, 12(13): 1744. DOI: 10.3390/cells12131744.
    [36]
    SUN W, MEEDNU N, ROSENBERG A, et al. B cells inhibit bone formation in rheumatoid arthritis by suppressing osteoblast differentiation[J]. Nat Commun, 2018, 9(1): 5127. DOI: 10.1038/s41467-018-07626-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (16) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return