Volume 23 Issue 9
Sep.  2025
Turn off MathJax
Article Contents
FAN Aiqing, WANG Hongxing, LI Xiaopan, CHEN Guangpeng, LI Dong, JIN Taotao, HOU Jin. Application effectiveness of AI-assisted diagnosis and treatment systems in general practice clinics[J]. Chinese Journal of General Practice, 2025, 23(9): 1535-1538. doi: 10.16766/j.cnki.issn.1674-4152.004172
Citation: FAN Aiqing, WANG Hongxing, LI Xiaopan, CHEN Guangpeng, LI Dong, JIN Taotao, HOU Jin. Application effectiveness of AI-assisted diagnosis and treatment systems in general practice clinics[J]. Chinese Journal of General Practice, 2025, 23(9): 1535-1538. doi: 10.16766/j.cnki.issn.1674-4152.004172

Application effectiveness of AI-assisted diagnosis and treatment systems in general practice clinics

doi: 10.16766/j.cnki.issn.1674-4152.004172
Funds:

 PWYq2025-03

 2021-24

  • Received Date: 2025-04-21
    Available Online: 2025-11-17
  •   Objective   To explore the application of an artificial intelligence (AI)-assisted diagnostic system in primary care settings and evaluate its effectiveness in improving disease differentiation efficiency, optimizing medical history documentation, and enhancing the quality of primary healthcare services, thereby providing empirical support for intelligent transformation in grassroots medical practices.   Methods   This empirical study deployed the Ada AI-assisted diagnostic system in two community health centers in Pudong New District, Shanghai from June to September 2024. Utilizing structured intelligent inquiry, differential diagnosis recommendations, and automated medical history generation, data from 987 patients were analyzed to assess system utilization rates, symptom distribution, diagnostic accuracy, and workflow optimization outcomes.   Results   Among 987 patients, the main symptoms included abdominal pain in 112 cases (11.35%), cough in 104 cases (10.54%), and headache in 86 cases (8.71%). The Ada artificial intelligence-assisted diagnosis and treatment system primarily identified hypertension (46 cases, 4.66%), tension-type headache (45 cases, 4.56%), and common cold (42 cases, 4.26%) as the top-ranked diagnoses (M1), while providing 3-5 differential diagnostic suggestions.   Conclusion   The AI system significantly enhances primary screening efficiency in general practice clinics. Through structured data integration, the Ada system improves disease screening efficacy and diagnostic standardization at the primary care level. We propose promoting an "AI-PCP (Primary Care Physician) synergistic model" to strengthen chronic disease and multi-morbidity management capabilities, providing technical support for hierarchical medical systems.

     

  • loading
  • [1]
    支涵颖. 全国基层医疗卫生资源区域性配置差异研究[J]. 社会科学前沿, 2024, 13(5): 410-418.

    ZHI H Y. Research onregional allocation differences of grassroots medical and health resources in China[J]. Advances in Social Sciences, 2024, 13(5): 410-418.
    [2]
    田甜, 张飞, 张璇, 等. 基于ChatGPT的人工智能技术在全科医疗服务中的应用研究[J]. 中华全科医学, 2025, 23(5): 721-725. doi: 10.16766/j.cnki.issn.1674-4152.003988

    TIAN T, ZHANG F, ZHANG X, et al. Research on the application of artificial intelligence techolgy based on ChatGPT in general medical services[J]. Chinese Journal of General Practice, 2025, 23(5): 721-725. doi: 10.16766/j.cnki.issn.1674-4152.003988
    [3]
    金红芳, 田军, 许冠华, 等. 县域医共体内慢性病患者"下转难"的调查研究[J]. 卫生经济研究, 2022, 39(7): 15-17.

    JIN H F, TIAN J, XU G H, et al. Research on the"difficulty referral to primary care institutions" of chronic disease patients in the county-level medical alliance[J]. Health Economics Research, 2022, 39(7): 15-17.
    [4]
    段晖, 刘颖, 张英楠, 等. 北京市医联体政策背景下慢病患者就医选择影响因素研究[J]. 中国卫生政策研究, 2020, 13(6): 14-20.

    DUAN H, LIU Y, ZHANG Y N, et al. Study on the influencing factors of the medical treatment choices of chronic disease patients under the background of Beijing integrated health care system[J]. Chinese Journal of Health Policy, 2020, 13(6): 14-20.
    [5]
    于洋, 李含伟. 社区医院全科医生人工智能素养的制约因素及路径调适[J]. 中国卫生事业管理, 2024, 41(9): 975-982.

    YU Y, LI H W. Constraints and Path Adjustment of General Practitioners' AI Literacy in Community Hospitals[J]. Chinese Health Service Management, 2024, 41(9): 975-982.
    [6]
    国家卫生健康委员会. 关于推进紧密型县域医疗卫生共同体建设的通知[EB/OL]. (2019-05-15)[2024-12-26]. https://www.gov.cn/zhengce/zhengceku/2019-10/08/content_5437020.htm.
    [7]
    国家卫生健康委员会. 卫生部办公厅关于印发《人工智能辅助诊断技术管理规范(试行)》的通知[EB/OL]. (2009-11-20)[2024-12-26]. http://www.nhc.gov.cn/zwgk/wtwj/201304/ffddea011a1c4ae498fcbfb1a125bfd5.shtml.
    [8]
    马海波. 过度医疗: 医疗服务管制之殇[J]. 延安大学学报(社会科学版), 2020, 42(4): 72-76.

    MA H B. Excessive Medical Treatment: The Induced Result of Medical Service Regulation[J]. Journal of Yan' an University (Social Sciences Edition), 2020, 42(4): 72-76.
    [9]
    刘延晶, 王少鹏, 徐喜卿, 等. 人工智能诊断系统在基层眼底视网膜疾病筛查领域的应用实践[J]. 眼科学报, 2023, 38(5): 405-413.

    LIU Y J, WANG S P, XU X Q, et al. Application practice of artificial intelligence diagnosis system in the field of primary fundus retinal disease screening[J]. Eye Science, 2023, 38(5): 405-413.
    [10]
    万东华, 江金女, 潘波, 等. 广东省基层医生对人工智能辅助诊疗技术的应用意愿分析[J]. 华南预防医学, 2023, 49(1): 32-36.

    WAN D H, JIANG J N, PAN B, et al. Application willingness of artificial intelligence‐assisted diagnosis and treatment technology among primary care physicians in Guangdong Province[J]. South China Journal of Preventive Medicine, 2023, 49(1): 32-36.
    [11]
    宋晨晓, 徐爱军. 高血压患者基层医疗机构就诊情况及其影响因素分析[J]. 中国公共卫生, 2018, 34(8): 1140-1142.

    SONG C X, XU A J. Status and influencing factors of health care seeking at grassroots medical institutions among hypertensive patients[J]. Chinese Journal of Public Health, 2018, 34(8): 1140-1142.
    [12]
    陈国湘, 李俊, 韦华, 等. 基于人工智能技术的全科医生培养模式探索[J]. 中华全科医学, 2021, 19(2): 167-170. doi: 10.16766/j.cnki.issn.1674-4152.001758

    CHEN G X, LI J, WEI H, et al. Exploration of general practitioner training model based on artificial intelligence technology[J]. Chinese Journal of General Practice, 2021, 19(2): 167-170. doi: 10.16766/j.cnki.issn.1674-4152.001758
    [13]
    胡佳敏, 邱艳, 任菁菁. AI在基层医疗慢性病管理中的应用研究进展[J]. 中华全科医学, 2024, 22(3): 481-485. doi: 10.16766/j.cnki.issn.1674-4152.003431

    HU J M, QIU Y, REN J J. Advances in the application of AI in chronic disease management in primary care[J]. Chinese Journal of General Practice, 2024, 22(3): 481-485. doi: 10.16766/j.cnki.issn.1674-4152.003431
    [14]
    吴晓航, 刘力学, 陈睛晶, 等. 白内障人工智能辅助诊断系统在社区筛查中的应用效果[J]. 眼科学报, 2021, 36(1): 4-9, 125.

    WU X H, LIU L X, CHEN Q J, et al. Application of artificial intelligence-assisted diagnostic system for community-based cataract screening[J]. Eye Science, 2021, 36(1): 4-9, 125.
    [15]
    王拥军, 刘涛, 刘子阳, 等. 人工智能在脑血管病领域中的应用[J]. 首都医科大学学报, 2025, 46(2): 177-183.

    WANG Y J, LIU T, LIU Z Y, et al. The applications of artificial intelligence in the field of cerebrovascular diseases[J]. Journal of Capital Medical University, 2025, 46(2): 177-183.
    [16]
    MENSAH E, PRINGLE C, ROBERTS G, et al. Deep learning in the management of intracranial aneurysms and cerebrovascular diseases: a review of the current literature[J]. World Neurosurg, 2022, 161: 39-45. doi: 10.1016/j.wneu.2022.02.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (14) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return