Citation: | GAO Xingfu, GUAN Han, YAN Ruilian, LING Nengyong, LUO Wenhao, WANG Sheng. Expression and clinical significance of CPT2 in renal clear cell carcinoma[J]. Chinese Journal of General Practice, 2023, 21(7): 1243-1247. doi: 10.16766/j.cnki.issn.1674-4152.003093 |
[1] |
高五岳, 郭园园, 刘贝贝, 等. 不同距离癌旁组织PD-1和PD-L1表达对肾部分切除术边距选择的临床意义[J]. 中华全科医学, 2019, 17(12): 2004-2007, 2034. doi: 10.16766/j.cnki.issn.1674-4152.001113
GAO W Y, GUO Y Y, LIU B B, et al. The clinical significances of PD-1 and PD-L1 expressions in different distant tumor adjacent tissues for selecting safe surgical margins in partial nephrectomy[J]. Chinese Journal of General Practice, 2019, 17(12): 2004-2007, 2034. doi: 10.16766/j.cnki.issn.1674-4152.001113
|
[2] |
CAO C C, MA Q, HUANG X B, et al. Targeted demethylation of the PLOD2 mRNA inhibits the proliferation and migration of renal cell carcinoma[J]. Front Mol Biosci, 2021, 8: 675683. DOI: 10.3389/fmolb.2021.675683.
|
[3] |
ZHANG D, WANG Y C, HU X P. Identification and comprehensive validation of a DNA methylation-driven gene-based prognostic model for clear cell renal cell carcinoma[J]. DNA Cell Biol, 2020, 39(10): 1799-1812. doi: 10.1089/dna.2020.5601
|
[4] |
MELONE M A B, VALENTINO A, MARGARUCCI S, et al. The carnitine system and cancer metabolic plasticity[J]. Cell Death Dis, 2018, 9(2): 228. doi: 10.1038/s41419-018-0313-7
|
[5] |
YAO M, CAI M, YAO D F, et al. Abbreviated half-lives and impaired fuel utilization in carnitine palmitoyl transferase Ⅱ variant fibroblasts[J]. PLoS One, 2015, 10(3): e0119936. DOI: 10.1371/journal.pone.0119936.
|
[6] |
HOUTEN S M, WANDERS R J A, RANEA-ROBLES P. Metabolic interactions between peroxisomes and mitochondria with a special focus on acylcarnitine metabolism[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(5): 165720. DOI: 10.1016/j.bbadis.2020.165720.
|
[7] |
FUJIWARA N, NAKAGAWA N, ENOOKU K, et al. CPT2 downregulation adapts HCC to lipid-rich environment and promotes carcinogenesis via acylcarnitine accumulation in obesity[J]. Gut, 2018, 67(8): 1493-1504. doi: 10.1136/gutjnl-2017-315193
|
[8] |
BONNEFONT J P, DJOUADI F, PRIP-BUUS C, et al. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects[J]. Mol Aspects Med, 2004, 25(5-6): 495-520. doi: 10.1016/j.mam.2004.06.004
|
[9] |
PEREYRA A S, RAJAN A, FERREIRA C R, et al. Loss of muscle carnitine palmitoyltransferase 2 prevents diet-induced obesity and insulin resistance despite long-chain acylcarnitine accumulation[J]. Cell Rep, 2020, 33(6): 108374. DOI: 10.1016/j.celrep.2020.108374.
|
[10] |
GU J J, YAO M, YANG J, et al. Mitochondrial carnitine palmitoyl transferase-Ⅱ inactivity aggravates lipid accumulation in rat hepatocarcinogenesis[J]. World J Gastroenterol, 2017, 23(2): 256-264. doi: 10.3748/wjg.v23.i2.256
|
[11] |
PEREYRA A S, HASEK L Y, HARRIS K L, et al. Loss of cardiac carnitine palmitoyltransferase 2 results in rapamycin-resistant, acetylation-independent hypertrophy[J]. J Biol Chem, 2017, 292(45): 18443-18456. doi: 10.1074/jbc.M117.800839
|
[12] |
LIN M H, LV D, ZHENG Y L, et al. Downregulation of CPT2 promotes tumorigenesis and chemoresistance to cisplatin in hepatocellular carcinoma[J]. Onco Targets Ther, 2018, 11: 3101-3110. doi: 10.2147/OTT.S163266
|
[13] |
HAN S J, WEI R, ZHANG X D, et al. CPT1A/2-mediated FAO enhancement-a metabolic target in radioresistant breast cancer[J]. Front Oncol, 2019, 9: 1201. doi: 10.3389/fonc.2019.01201
|
[14] |
LIU J X, LI Y M, XIAO Q, et al. Identification of CPT2 as a prognostic biomarker by integrating the metabolism-associated gene signature in colorectal cancer[J]. BMC Cancer, 2022, 22(1): 1038. doi: 10.1186/s12885-022-10126-0
|
[15] |
SUN Z L, JING C Y, XIAO C T, et al. Prognostic risk signature based on the expression of three m6A RNA methylation regulatory genes in kidney renal papillary cell carcinoma[J]. Aging, 2020, 12(21): 22078-22094. doi: 10.18632/aging.104053
|
[16] |
PEREYRA A S, HASEK L Y, HARRIS K L, et al. Loss of cardiac carnitine palmitoyltransferase 2 results in rapamycin-resistant, acetylation-independent hypertrophy[J]. J Biol Chem, 2017, 292(45): 18443-18456. doi: 10.1074/jbc.M117.800839
|
[17] |
ZHANG X H, ZHANG Z, LIU S J, et al. CPT2 down regulation promotes tumor growth and metastasis through inducing ROS/NFκB pathway in ovarian cancer[J]. Transl Oncol, 2021, 14(4): 101023. DOI: 10.1016/j.tranon.2021.101023.
|
[18] |
LI H, CHEN J H, LIU J, et al. CPT2 down regulation triggers stemness and oxaliplatin resistance in colorectal cancer via activating the ROS/Wnt/β-catenin-induced glycolytic metabolism[J]. Exp Cell Res, 2021, 409(1): 112892. DOI: 10.1016/j.yexcr.2021.112892.
|
[19] |
GUO X, WANG A M, WANG W, et al. HRD1 inhibits fatty acid oxidation and tumorigenesis by ubiquitinating CPT2 in triple-negative breast cancer[J]. Mol Oncol, 2021, 15(2): 642-656. doi: 10.1002/1878-0261.12856
|
[20] |
AIMUDULA A, NASIER H, YANG Y, et al. PPARα mediates sunitinib resistance via NF-κB activation in clear cell renal cell carcinoma[J]. Int J Clin Exp Pathol, 2018, 11(5): 2389-2400.
|
[21] |
WU Y F, SONG T, LIU M W, et al. PPARG negatively modulates Six2 in tumor formation of clear cell renal cell carcinoma[J]. DNA Cell Biol, 2019, 38(7): 700-707. doi: 10.1089/dna.2018.4549
|