| Citation: | WANG Yuhang, SHEN Zhenya. The effect of lipid metabolism on the occurrence, development and prognosis of aortic disease[J]. Chinese Journal of General Practice, 2023, 21(8): 1374-1378. doi: 10.16766/j.cnki.issn.1674-4152.003126 | 
 
	                | [1] | TANG X, LU K, LIU X, et al. Incidence and survival of aortic dissection in urban china: results from the national insurance claims for epidemiological research (nicer) study[J]. Lancet Reg Health West Pac, 2021, 17: 100280. DOI:  10.1016/j.lanwpc.2021.100280. | 
| [2] | SAYED A, MUNIR M, BAHBAH E I. Aortic dissection: a review of the pathophysiology, management and prospective advances[J]. Curr Cardiol Rev, 2021, 17(4): e230421186875. DOI:  10.2174/1573403x16666201014142930. | 
| [3] | GURUNG R, CHOONG A M, WOO C C, et al. Genetic and epigenetic mechanisms underlying vascular smooth muscle cell phenotypic modulation in abdominal aortic aneurysm[J]. Int J Mol Sci, 2020, 21(17). DOI:  10.3390/ijms21176334. | 
| [4] | PAGHDAR S, KHAN T M, PATEL N P, et al. Doxycycline therapy for abdominal aortic aneurysm: inhibitory effect on matrix metalloproteinases[J]. Cureus, 2021, 13(5): e14966. DOI:  10.7759/cureus.14966. | 
| [5] | PRADO A F, BATISTA R I M, TANUS-SANTOS J E, et al. Matrix metalloproteinases and arterial hypertension: role of oxidative stress and nitric oxide in vascular functional and structural alterations[J]. Biomolecules, 2021, 11(4). DOI:  10.3390/biom11040585. | 
| [6] | LIBBY P. The changing landscape of atherosclerosis[J]. Nature, 2021, 592(7855): 524-533. doi:  10.1038/s41586-021-03392-8 | 
| [7] | ZHANG F, GUO X, XIA Y, et al. An update on the phenotypic switching of vascular smooth muscle cells in the pathogenesis of atherosclerosis[J]. Cell Mol Life Sci, 2021, 79(1): 6. | 
| [8] | LIU X, LIU J, LI Y, et al. The correlation between the inflammatory effects of activated macrophages in atherosclerosis and aortic dissection[J]. Ann Vasc Surg, 2022, 85: 341-346. doi:  10.1016/j.avsg.2022.03.027 | 
| [9] | NANA P, DAKIS K, BRODIS A, et al. Circulating biomarkers for the prediction of abdominal aortic aneurysm growth[J]. J Clin Med, 2021, 10(8). DOI:  10.3390/jcm10081718. | 
| [10] | MIAO J, ZANG X, CUI X, et al. Autophagy, hyperlipidemia, and atherosclerosis[J]. Adv Exp Med Biol, 2020, 1207: 237-264. DOI:  10.1007/978-981-15-4272-5_18. | 
| [11] | CHEN Y, HUANG M, XUAN Y, et al. Association between lipid levels and risk for different types of aneurysms: a mendelian randomization study[J]. J Pers Med, 2021, 11(11). DOI:  10.3390/jpm11111171. | 
| [12] | RODRÍGUEZ-CARRIO J, CERRO-PARDO I, LINDHOLT J S, et al. Malondialdehyde-modified hdl particles elicit a specific igg response in abdominal aortic aneurysm[J]. Free Radic Biol Med, 2021, 174: 171-181. doi:  10.1016/j.freeradbiomed.2021.08.004 | 
| [13] | VAN DER VORST E P C. High-density lipoproteins and apolipoprotein a1[J]. Subcell Biochem, 2020, 94: 399-420. | 
| [14] | LIN Y J, LIN J L, PENG Y C, et al. TG/HDL-C ratio predicts in-hospital mortality in patients with acute type a aortic dissection[J]. BMC Cardiovasc Disord, 2022, 22(1): 346. doi:  10.1186/s12872-022-02793-5 | 
| [15] | FATTAHI N, ROSENBLAD A, KRAGSTERMAN B, et al. Risk factors in 50-year-old men predicting development of abdominal aortic aneurysm[J]. J Vasc Surg, 2020, 72(4): 1337-1346.e1331. DOI:  10.1016/j.jvs.2019.11.062. | 
| [16] | LEE J S, PARK S C, KIM S D. Effects of hypercholesterolism on expansion of abdominal aortic aneurysm in rat model[J]. J Cardiothorac Surg, 2021, 16(1): 352. doi:  10.1186/s13019-021-01734-1 | 
| [17] | LIU X, SU X, ZENG H. Impact of admission serum total cholesterol level on in-hospital mortality in patients with acute aortic dissection[J]. Pak J Med Sci, 2016, 32(4): 939-943. | 
| [18] | ZENG X, ZHOU X, TAN X R, et al. Admission ldl-c and long-term mortality in patients with acute aortic dissection: a survival analysis in china[J]. Ann Transl Med, 2021, 9(16): 1345. doi:  10.21037/atm-21-3511 | 
| [19] | WANG B, LIU J, CHEN S, et al. Malnutrition affects cholesterol paradox in coronary artery disease: a 41, 229 chinese cohort study[J]. Lipids Health Dis, 2021, 20(1): 36. doi:  10.1186/s12944-021-01460-6 | 
| [20] | IBRAHIM M, THANIGAIMANI S, SINGH T P, et al. Systematic review and meta-analysis of mendelian randomisation analyses of abdominal aortic aneurysms[J]. Int J Cardiol Heart Vasc, 2021, 35: 100836. DOI:  10.1016/j.ijcha.2021.100836. | 
| [21] | TANG W, YAO L, ROETKER N S, et al. Lifetime risk and risk factors for abdominal aortic aneurysm in a 24-year prospective study: the aric study (atherosclerosis risk in communities)[J]. Arterioscler Thromb Vasc Biol, 2016, 36(12): 2468-2477. doi:  10.1161/ATVBAHA.116.308147 | 
| [22] | LIU X T, HE X W, TAN R, et al. High-density lipoprotein cholesterol and in-hospital mortality in patients with acute aortic dissection[J]. J Huazhong Univ Sci Technolog Med Sci, 2016, 36(3): 364-367. doi:  10.1007/s11596-016-1592-9 | 
| [23] | ZHOU Y, YANG G, HE H, et al. Triglyceride/high-density lipoprotein cholesterol ratio is associated with in-hospital mortality in acute type b aortic dissection[J]. Biomed Res Int, 2020, 2020: 5419846. DOI:  10.1155/2020/5419846. | 
| [24] | LI T, YANG C, YANG J, et al. Elevated triglyceride-glucose index predicts mortality following endovascular abdominal aortic aneurysm repair[J]. Front Nutr, 2023, 10: 1116425. DOI:  10.3389/fnut.2023.1116425. | 
| [25] | HEIDEMANN B E, KOOPAL C, BOTS M L, et al. The relation between VLDL-cholesterol and risk of cardiovascular events in patients with manifest cardiovascular disease[J]. Int J Cardiol, 2021, 322: 251-257. doi:  10.1016/j.ijcard.2020.08.030 | 
| [26] | ALLARA E, MORANI G, CARTER P, et al. Genetic determinants of lipids and cardiovascular disease outcomes: a wide-angled mendelian randomization investigation[J]. Circ Genom Precis Med, 2019, 12(12): e002711. DOI:  10.1161/circgen.119.002711. | 
| [27] | ERHART P, KÖRFER D, GROND-GINSBACH C, et al. Genetic variation in lrp1 associates with stanford type B aortic dissection risk and clinical outcome[J]. J Cardiovasc Dev Dis, 2022, 9(1). DOI:  10.3390/jcdd9010014. | 
| [28] | LEGAKI E, SIASOS G, KLONARIS C, et al. Mir-335-5p as a potential regulator of lrp1 expression in abdominal aortic aneurysm[J]. Hellenic J Cardiol, 2020, 61(6): 430-432. doi:  10.1016/j.hjc.2020.01.002 | 
| [29] | XIE N, ZHANG W, LI H, et al. Admission values of plasma biomarkers predict the short-term outcomes in acute aortic dissection[J]. Heart Surg Forum, 2021, 24(1): e048-e054. doi:  10.1532/hsf.3417 | 
| [30] | HENEIN M Y, VANCHERI S, LONGO G, et al. The role of inflammation in cardiovascular disease[J]. Int J Mol Sci, 2022, 23(21). DOI:  10.3390/ijms232112906. | 
| [31] | PARASKEVAS K I, MUKHERJEE D, LIAPIS C D, et al. Statin use and cardiovascular event/death rates after abdominal aortic aneurysm repair procedures[J]. Curr Vasc Pharmacol, 2022, 20(4): 313-314. doi:  10.2174/1570161119666210930100154 | 
| [32] | XIONG X, WU Z, QIN X, et al. Meta-analysis suggests statins reduce mortality after abdominal aortic aneurysm repair[J]. J Vasc Surg, 2022, 75(1): 356-362.e354. DOI:  10.1016/j.jvs.2021.06.033. | 
| [33] | FORSDAHL S H, SINGH K, SOLBERG S, et al. Risk factors for abdominal aortic aneurysms: a 7-year prospective study: the tromsø study, 1994-2001[J]. Circulation, 2009, 119(16): 2202-2208. doi:  10.1161/CIRCULATIONAHA.108.817619 | 
| [34] | GUO Y, YAN B, GUI Y, et al. Physiology and role of pcsk9 in vascular disease: potential impact of localized pcsk9 in vascular wall[J]. J Cell Physiol, 2021, 236(4): 2333-2351. doi:  10.1002/jcp.30025 | 
| [35] | PASTA A, CREMONINI A L, PISCIOTTA L, et al. Pcsk9 inhibitors for treating hypercholesterolemia[J]. Expert Opin Pharmacother, 2020, 21(3): 353-363. doi:  10.1080/14656566.2019.1702970 | 
| [36] | TANAKA H, IIDA Y, IWAKI T, et al. Elevated plasma levels of ldl cholesterol promote dissecting thoracic aortic aneurysms in angiotensin ii-induced mice[J]. Ann Vasc Surg, 2018, 48: 204-213. doi:  10.1016/j.avsg.2017.10.006 | 
| [37] | LIU C, CHEN J, CHEN H, et al. Pcsk9 inhibition: from current advances to evolving future[J]. Cells, 2022, 11(19). DOI:  10.3390/cells11192972. | 
| [38] | SCHMIDT A F, SWERDLOW D I, HOLMES M V, et al. Pcsk9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study[J]. Lancet Diabetes Endocrinol, 2017, 5(2): 97-105. doi:  10.1016/S2213-8587(16)30396-5 | 
| [39] | BANERJEE S, DE A. Pathophysiology and inhibition of cholesteryl ester transfer protein for prevention of cardiovascular diseases: an update[J]. Drug Discov Today, 2021, 26(7): 1759-1764. doi:  10.1016/j.drudis.2021.03.016 | 
| [40] | ADORNI M P, PALUMBO M, MARCHI C, et al. Hdl metabolism and functions impacting on cell cholesterol homeostasis are specifically altered in patients with abdominal aortic aneurysm[J]. Front Immunol, 2022, 13: 935241. DOI:  10.3389/fimmu.2022.935241. | 
| [41] | MILLER N E. Cetp inhibitors and cardiovascular disease: time to think again[J]. F1000Res, 2014, 3: 124. DOI:  10.12688/f1000research.4396.1. | 
| [42] | KERSTEN S. Angptl3 as therapeutic target[J]. Curr Opin Lipidol, 2021, 32(6): 335-341. doi:  10.1097/MOL.0000000000000789 | 
| [43] | HARADA-SHIBA M, ALI S, GIPE D A, et al. A randomized study investigating the safety, tolerability, and pharmacokinetics of evinacumab, an angptl3 inhibitor, in healthy japanese and caucasian subjects[J]. Atherosclerosis, 2020, 314: 33-40. doi:  10.1016/j.atherosclerosis.2020.10.013 | 
